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ABSTRACT

This work presents an integrated framework for longer-term structural health monitoring (SHM)
based on hysteresis loop analysis (HLA). Hysteresis loops has proven an effective indication of
damage assessment in civil engineering structural health monitoring (SHM). It provides rapid, near
real-time report on damage states for immediate post-event diagnosis using a trained deep learning
network (DLN) model. Stiffness evolution and its exact values are identified using the HLA
method, enabling a more detailed analysis and providing foundation to create a computational
model for further analysis of risk of damage and collapse. With the resulting predictive, nonlinear
model, an incremental dynamic analysis (IDA) is performed to assess risk of damage or probability
of collapse. This IDA enables, in turn, financial loss estimates based on known risk and accurate
predictive models for optimal decision-making. Therefore, the overall integrated SHM framework
is not only damage diagnosis and localization, but extends these results to create reasonable
baseline dynamic models for forecasting structural performance and predicting remaining life,
which in turn enable automated structural and financial risk analyses.

A case study of the proposed framework using experimental data from a 3-storey apartment
structure tested at the E-Defence facility in Japan is presented. Results show predicted linear and
nonlinear responses match very well with the experimental data using the foundation model created
from the HLA SHM results, indicating it provides a very accurate representation of the real damage
states that would occur. The combined IDA analysis enables the updating of collapse fragility
curves as subsequent events occur, and provides the results to quantify seismic induced financial
losses in longer-term monitoring. The overall framework takes SHM from a tool providing data into
automated prediction analysis by “cloning” the structure using computational modelling, which in
turn allows optimised decision making using existing risk analyses and tools.
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1 INTRODUCTION

Seismic damage is a major risk in seismic zones with significant follow-on social and economic impacts, and
the resulting local damage may have a great impact on the overall health or state of the structure, which can
increase the potential risk of building collapse and loss of lives in an aftershock or new event in the future.
Rapid retrofit would be necessary to increase the safety levels of damaged structures to their adequate safety
requirement, as well as their ability to stand under the potential damage. However, retrofit funding to achieve
extremely high safety standards may be limited to the reality of economics and government policy, where
making an optimal decision for the owners with limited experience of engineering analysis may be difficult.
Therefore, there is a significant need to develop a performance-based framework with explicit, quantified
properties for owners, insurers, and decision makers presiding over cities with many damaged structures.

Establishing retrofit priorities requires an estimation of the probability of current and potential future damage
(Williams and Sexsmith 1995). Traditionally, story deformation and energy dissipation demand were used
for damage assessment or collapse prediction (Powell and Allahabadi 1988). However, structural safety
against nonlinear dynamic instability cannot be ensured by simply limiting the maximum story drift (Bernal
1992; Williamson 2003). In addition, energy dissipated in small amplitude cycles could significantly exceed
the energy dissipated up to failure, which may not be reflected in some simplified seismic design
methodologies for low cycle fatigue (Teran-Gilmore and Jirsa 2005). Equally, collapse capacity is highly
affected by the nature of ground motions and changes of structural properties due to damage and/or structural
reconfiguration (Zareian and Krawinkler 2007). Thus, post-earthquake assessment of damage and
vulnerability to aftershocks based on a nonlinear dynamic analysis is considered essential to account for the
evolution of material behaviours and structural properties under varying dynamic loads (Villaverde 2007).

Structural health monitoring (SHM) provides methods to detect, localise, and quantify damage after
earthquakes. Although there is a wide range of SHM methods available in the literature, they have mainly
focused on turning data into estimations of current structural properties, whose changes can reflect damage.
However, very few SHM methods offer results immediately post-event, and many require human input,
which may not be available (Moaveni et al. 2012).

More importantly, SHM does not provide a ready, quantified tool for assessing, the ongoing safety of a
structure or the, likely now modified, risk of collapse. There has been a lack of framework to extend SHM
from a damage-monitoring role into a more comprehensive risk assessment process for both immediate use
and longer-term decision-making. Therefore, an accurate, predictive foundation computational model made
from the SHM results would enable dynamic assessment and risk prediction of further damage or collapse in
the subsequent shocks for optimal decision-making. In essence, the automated creation of a digital structural
model or “digital clone” of the damaged post-event structure from SHM results would enable equally
automated structural and financial future risk analyses and optimised decision-making (Mander et al. 2007),
where digital clones are emerging as a multi-billion dollar tool in other industries (The Economist 2016).

This paper suggests an integrated framework to provide a rapid, automated and quantified damage
assessment after a major event and risk analysis of damage or collapse in the future, enabling more optimal
decision-making for owners and occupants. The procedure is presented using case study of a full-scale 3-
story apartment building tested on the E-defence shake table in Japan (Zhou et al. 2017).

2 RISK ANALYSIS: A CONCEPTURAL FRAMEWORK

One possible conceptual framework for seismic risk analysis is shown in Figure 1. The overall approach is
based on the hysteresis loop analysis, where hysteresis loops have proven effective in seismic performance-
based analysis and designs in terms of capture nonlinear dynamics (Cifuentes and Iwan 1989; lwan 2002; Xu
et al. 2014; Zhou et al. 2015). Detailed explanation of key steps are given in the following sections.
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Figure 1: A framework for seismic risk analysis based on SHM damage quantification and localisation, and
the creation of predictive nonlinear models or “clones” to enable future risk assessment.

2.1 Seismic data acquisition

Real-time data acquisition from an instrumented structure has become a readily possible reality with the
significant development of innovative sensors (Spencer Jr et al. 2004; Hsieh et al. 2006; Baptista et al. 2012).
Noisy accelerations, velocities and displacements can be corrected with advanced GPS method (Hann et al.
2009), although measuring displacement is still expensive in reality. Current research has shown the
possibility of constructing hysteresis loops in a near-real time fashion (Ilwan 2002; Xu et al. 2014; Zhou et al.
2015). Therefore, reconstruction of accurate hysteresis loop immediately after earthquakes is entirely
feasible, where sensor technology advances will make this task increasingly accurate and lower cost.

2.2 Deep learning network (DLN)

Histograms of stiffness can be extracted from hysteresis loops for training a DLN model to estimate the pre-
defined target values relevant to damage states. Training the DLN model is time consuming with a large
number of data sets. However, the trained model can be readily used once trained, and thus can provide
initial damage estimation results in seconds. Therefore, the DLN estimation is model-free and can be used a
quick indicator of damage assessment and structural safety, as well as providing a baseline for further more
detailed SHM analysis. These models can also be made quite general to a wide range of structures.

2.3 Hysteresis loop analysis (HLA)

The model-free HLA method is a mechanics-relevant SHM approach, and has shown its ability to accurately
identify nonlinear changes in structural stiffness and other properties in an entirely automated fashion (Zhou
et al. 2015; Zhou et al. 2017; Zhou et al. 2017a). The identified change of stiffness from HLA is available
across individual stories, enabling a more detailed analysis for damage assessment and identification of other
dynamic properties. It has also demonstrated the ability to track these stiffness changes across multiple
nonlinear events (Zhou et al. 2017). More importantly, SHM results from HLA provides foundation damage
assessment in terms of stiffness changes at the story or finer level to back calculate and identify an assumed
computational foundation model for further analysis of risk of damage and collapse.

2.4 Automated modelling

Automated model creation or the creation of a “digital clone” (The Economist 2016) enables potentially
automated dynamic analysis within minutes if necessary, providing better data to optimise decision-making
and reduce uncertainty. However, the model-free HLA or DLN methods do not directly yield a model to
simulate further outcomes. Therefore, automated modelling approaches using SHM results to create
actionable, accurate and, critically, predictive computational models could provide potentially significant
benefit. Importnatly, model-free methods avoid constraints to a single or fixed baseline model, and thus
suffer less from errors due to poor model selection for SHM (Zhou et al. 2017a). Although a nonlinear model
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still needs to be assumed for further dynamic analysis, SHM results can provide more evidence or a priori
knowledge for model selection.

2.5 Incremental dynamic analysis (IDA)

IDA is a parametric analysis method used to more thoroughly estimate building performance under seismic
loading to quantify the relationship between seismic capacity and demand, potentially leading to evaluation
of financial risk (Vamvatsikos and Cornell 2002). A series of nonlinear dynamic analysis are performed by
subjecting the foundation model to varying ground motion records scaling the intensity in increments until
global collapse is reached. The IDA has proved a valuable tool to give a clear indication of the relationship
between the seismic demands on structures and their global capacity (Mander et al. 2007). However, IDA is
highly dependent on the input ground motion and the accuracy of computational model, which introduces
aleatory and epistemic uncertainty in quantifying collapse capacity (Zareian and Krawinkler 2007).
Therefore, IDA is suggested to be performed using a range of representative ground motions and parameter
dispersion is taken into account for modelling uncertainty (Kennedy and Ravindra 1984; Cornell et al. 2002).

2.6 Risk assessment for decision making

The results of IDA explicitly address the probability of collapse or safety margin with more intuitive
estimates of losses caused by an earthquake. What is challenging is how to translate the IDA results into a
retrofit decision. One possible application could transform IDA results into a financial implication of damage
using expected annual loss (EAL) (Mander et al. 2007). The calculated EAL can be used to estimate the
likely cost of recovering a structure or similar structure across located in the same region to the safety
standard, where the owners can decide based on the EAL for the current structure or after (a modelled)
retrofit which outcome offers the best financial outcome. It is thus provides a pragmatic way to allocate
limited funds for repair or to determine if it is more optimal to demolish some damaged structures.

3 CASE STUDY

The employed structure is a full scale 3-story steel moment resisting frame (SMRF) building tested in the E-
defence shake table in Japan (Zhou et al. 2017). Assessment of seismic damage is investigated over 6 input
ground motions in both x and y horizontal direction, as listed in Table 1. Accelerations and displacements are
measured at each floor to reconstruct 3 hysteresis loops in each (X, y) direction for each event. More details
on the reconstruction of hysteresis loops for MDOF systems can be found in (Zhou et al. 2017).

Table 1: Sequential shake table tests and PGA in each direction (x,y,z).

Test No Input event PGA y-direction PGA x-direction PGA z-direction
#01 BSL2-18% 0.11 0.13 0.01
#02 Sannomal 0.22 0.16 0.01
#03 Uemachi 0.30 0.35 0.01
#04 Toshin-Seibu 0.62 0.63 0.06
#05 Sannomal 0.21 0.15 0.01
#06 Nankai-Trough 0.87 0.74 0.03

The DLN model is trained using simulated data from 20,000 virtual buildings including a wide range of
dynamic behaviours and ground motions. Damage assessment using both DLN and HLA are implemented in
x and y directions over the 6 earthquakes. The identified stiffness changes in the y-direction for both methods
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are compared in Figure 2, which shows a very good match in the trend of stiffness drops over the events.
Damage assessment using the pre-trained DLN model can be done in seconds, providing rapid notice of
damage defined by stiffness degradation, as listed in Table 2 (Carrillo 2015) or other methods. However, the
DLN does not provide true stiffness values and cannot be used to create a nonlinear computational model.

Table 2: Damage states of stiffness degradation.

DI Damage states Repair required
0~0.10 No damage Immediate occupancy
0.10~0.20 Minor damage Inspect, patch
0.20~0.40 Moderate damage Repair components
0.40~0.70 Major damage Rebuild components
>0.70 Collapse Rebuild structures
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100% 100%
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Figure 2: Comparing predicted stiffness drops between DLN and HLA for each story over 6 earthquakes.
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Figure 3: Identified evolution of HLA stiffness for each story over 6 earthquakes.
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Figure 3 presents the identified evolution of the actual stiffness values of each story using HLA method. It is
important to note the final stiffness values for each event are within 5% of the next event’s initial identified
stiffness value. This event-to-event consistency and accuracy is evident for each storey and event in both
directions. Therefore, HLA results can be used to back calculate and identify system parameters for an
assumed hysteretic foundation model (Wen 1976) in an automated fashion.

The automated foundation model yields a good match between the modelled and measured response with
correlation coefficients Reorrcoer =0.94, 0.92, 0.89 for the first, second and third story, respectively, as shown
in Figure 4. More importantly, the predicted response for the following stronger event EQ6 using the
foundation model also match well with the measured response with Reorrcoer=0.93, 0.95, 0.91, as shown in
Figure 5. Therefore, the overall results indicate the possibility of creating a model using HLA results for
response and damage prediction to future events, and thus provide a more accurate computational model for
incremental dynamic analysis.
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Figure 4: Comparing modelled and true displacement response of EQ4 for the experimental building.
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Figure 5: Comparing predicted and true displacement response of EQ6 for the experimental building.

There is no unique definition to characterize the intensity of an earthquake record in IDA. In this case study,
spectral acceleration at the structures first mode period has been used as the intensity measure (Adam and
Jéger 2012). In addition, the analysis is performed for a range of 60 ground motions (Somerville 1997),
providing a range of ground motion spectra and thus adding robustness to the results. Collapse capacity in all
cases was identified through scaled magnitude of the ground motion until collapse. The IDA curves
generated for incremented magnitude for each earthquake until collapse are shown in Figure 6. It shows the
effects of different earthquake ground motions on the specified proof of concept structure.

Probability of collapse based on log normal distribution can then be calculated by counting the collapse
capacity values of all ground motions, which could then be used to determine damage loss in a financial
sense expressed by the expected annual loss (Mander et al. 2007). It is important to note assessing
probability of collapse using IDA is complicated and significantly affected by structural and earthquake
uncertainties (Villaverde 2007). Hence, it is still challenging to develop an efficient method considering all
types of uncertainty in the assessment of collapse.
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Figure 6: IDA curves for a standardised set of 60 earthquake records.

Limited information is known for the collapse mechanism of real structures in code provisions, while “digital
clones” feed virtual models with real world data to significantly improve the confidence of testing structures
against damage/collapse before aftershocks and new events, which would thus improve efficacy of decision
making and reduce the cost and time on maintenance. As similar or even same buildings regardless of
construction variability could be built in the same region, the virtual part of the assessment framework can be
readily extended without additional cost from vertical to horizontal for the same types of buildings, where
similar platform over a range of industries have shown billions of dollars in saving over the lifetime of
product (The Economist 2016).

4 CONCLUSION

This paper proposes an overall concept to extend SHM from damage assessment tool towards a potentially
far more valuable predictive future risk analysis tool to optimise decision-making. Given proven SHM
methods, such as the HLA method used in this case study, what is required the damage and localisation data
exists to create accurate, predictive nonlinear models to predict future responses of the now-damaged
structure. The case study demonstrates the potential for this model creation to be automated, which along
with automated SHM using the HLA method, provides the capability to go from identified damage to
nonlinear automated modelling to automated analysis of these models with results including future structural
and financial risks and costs, which can be used to optimise decision-making.

Overall, this concept employs SHM damage data to create “digital clones” of damaged structures for analysis
to guide decision-making, which is a major extension of the role of SHM from monitoring tool to automated
decision-making system. More specifically, “digital clones” are emerging in a range of industries, and this
concept brings them to structural and earthquake engineering, where their potential could be significant, both
socially and economically.
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