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ABSTRACT: In 1998 the New Zealand Transport Agency started a project of Seismic 

Screening, Assessment and Retrofit of bridges on State Highways in New Zealand.  The 

project started with Stage 1: Seismic Screening, completed in 2002, followed by Stage 2: 

detailed seismic assessments and retrofits.  Numerous challenges have been encountered 

during Stage 2.  The paper discusses some of these challenges and how they have been 

dealt with, with the aim to assist both the owners of the bridges and the engineers who are 

involved in this type of work. 

1 INTRODUCTION 

In 1993, then Transit New Zealand and now New Zealand Transport Agency, commissioned a pilot 

project to develop a seismic screening procedure for state highway bridges, for which it is responsible.  

The project resulted in the publication of Transit Research Report Nº 58 (Transit, 1996), followed by 

the Manual for Seismic Screening of Bridges (Transit, 1998).  In the same year Transit started an 

ambitious project for the Seismic Screening of bridges.  This desk top study (Stage 1), completed in 

2002, identified 335 bridges that required a detailed seismic assessment (DSA) and a further 170 

bridges with inadequate or non-existent linkages between spans necessary to reduce the risk of span 

unseating.  Based on the seismic hazard at the site and importance and vulnerability of the bridges, a 

priority list was created and the work on Stage 2 - DSA and seismic retrofit started in 2003.  This 

paper discusses some of the challenges and how these were dealt with since the commencement of 

Stage 2. 

2 SCOPE OF THE PROJECT AND CURRENT STATUS 

With almost 11,000 km of state highways (and a further 83,000km of local roads) New Zealand is 

amongst the countries with the highest length of roads per capita population.  It was considered 

prudent at the start of the project to categorise SH routes into three priority groups (Chapman et al, 

2005): Priority 1 routes (with more than 4,000 vehicles per day that provide essential link to large 

centres of population or carry significant numbers of commercial vehicles), Priority 2 routes (carrying 

between 1,000 and 4,000 vehicles per day, or where the routes provide alternative access to large 

centres of population) and Priority 3 routes (the remaining low volume highways in the network that 

are largely intra-regional in character). 

Seismic screening and the subsequent ranking of bridges (Stage 1) was completed using a range of 

structural and non-structural criteria.  These are discussed in detail in Chapman (2005).  Based on the 

results of the screening, completed bridges were separated and ranked into those that are eliminated 

from further assessment (as considered low risk or as on programme for replacement), those identified 

as having linkage deficiencies and those requiring a detailed assessment.  About 170 bridges were 

found to require improvement to their inter-span linkages, of which 166 have been retrofitted as part 

of this project.  Of the 335 bridges identified as requiring detailed assessment, 192 were on Priority 

route 1.  To date more than 150 detailed seismic assessments of those have been completed and more 

than 40 bridges have been, or are in the process of being retrofitted as part of the project. 



2 

3 PROCESS – FROM DETAILED SEISMIC ASSESSMENT TO RETROFIT 

In Stage 2 the process followed these four steps: 1 – Detailed Seismic Assessment (DSA), 2 – 

preparation of a Seismic Retrofit Design Statement (DS), 3 – design of the retrofit and preparation of 

Contract Documentation (CD), and 4 – construction.  DSA reports, DS and CD were all subject to the 

scrutiny of NZ Transport Agency appointed peer reviewers. 

4 ISSUES RELATED TO DETAILED SEISMIC ASSESSMENT AND RETROFIT DESIGN 

In this section we discuss briefly the methodology and issues encountered during the assessment and 

the design of seismic retrofitting. 

4.1 Methodology 

The detailed seismic assessment of bridges was completed following the Direct Displacement Based 

Method (DDBM), using a non-linear push-over analysis by computer modelling and generally 

following the FEMA 440 model, with reference to Priestley (1996, 2007) and NZSEE (2006). 

4.1.1 Seismic performance criteria and retrofit design criteria 

New bridges on state highways in New Zealand are now designed (Bridge Manual, 2014) assuming a 

100 year “design life” and a 2,500 year return period shaking as an Ultimate Limit State (ULS) design 

level.  It is recognised, however, that if adopted for the seismic assessment of existing bridge stock 

which is typically more than 40 years old, the above criteria may lead to economically unjustifiable 

retrofits.  Instead, the following standards (for assessment and retrofit) have been adopted: for bridges 

with a remaining life of 50 years or more, a 1,000 year return period (ULS) event and for those with a 

remaining life of less than 50 years, a 500 year return period (ULS) event.  Where the retrofit options 

are expected to cost more than 40% of the bridge replacement value, a lesser standard may be agreed.  

The lower limits adopted were 150 and 250 year return period (ULS) events for bridges with less than 

50 and more than 50 years remaining life respectively. 

Further to the above, the level at which the margin against the collapse of the bridge becomes low (the 

Collapse Limit State (CLS) prevention event) should not be less than 500 years return period event.  

This is an absolute minimum but generally the CLS event was adopted as being equivalent to level of 

shaking 1.5 times that adopted for the ULS event. 

4.1.2 Seismic demand 

Seismic demand was derived following the recommendations of NZS 1170.5:2004 and as modified by 

the Bridge Manual.  A further modification made in the DDBM assessment is that the Ductility Factor, 

k, was set to unity.  Instead of assumed ductility, the effects of energy dissipation were allowed for 

via the equivalent viscous damping in the system, assessed following the Modified Acceleration 

Displacement Response spectra method (MADRS) (FEMA, 440).  Also, the Structural Performance 

Factor, Sp, was set to unity.  This factor allows for some additional damping in the supporting soil, so 

using a lower value than unity would be a duplication of the effect when the MADRS method 

discussed above is used in the assessment. 

4.1.3 Material and section properties 

Probable, rather than the dependable material properties were used in the determination of the section 

and member capacities.  This was done so that the actual, rather than the design capacity of the 

structure can be estimated.  Effective “cracked” section properties were assumed for all concrete 

sections where member cracking / yielding is exceeded. 

4.1.4 Deck diaphragms 

Concrete decks have been considered typically as rigid diaphragms.  Where linkages are provided 

across joints, their stiffness and strength has been considered in the modelling of the diaphragm action. 
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4.1.5 Bridge skew 

The effect of the bridge skew was considered by 3D modelling and by applying seismic load in the 

relevant / critical load directions.  It was agreed with NZ Transport Agency that, considering the 

complexity of this type of analysis and the Structural Performance factor, Sp of unity, the effect of the 

skew needs only to be investigated for bridges with a skew larger than 25º. 

4.1.6 Soil –structure interaction 

This was typically modelled via use of non-linear elastic perfectly plastic soil springs.  Lower and 

upper bound soil properties were used to investigate the sensitivity of bridge response to these 

parameters.  The force-deformation curve of each soil spring behind the abutments was modelled 

following the recommendations of either Caltrans (2013) or Khalili-Tehrani (2010).  The ultimate 

resistance and secant stiffness to the yield displacement for pile soil springs were determined from the 

recommendations of Lam and Martin (1986).  Ground conditions were assessed from geology and site 

reconnaissance to supplement any information on the drawings based on an understanding of past 

design and construction practices.  Where important, these have been supplemented by site specific 

geotechnical investigations to determine the critical geotechnical issues. 

4.1.7 Section / Member capacities, ductility capacity and overstrength 

Member capacities were determined following relevant New Zealand and international material 

standards and with reference to Priestley et al (1996, 2007) and NZSEE (2006).  Since the aim was to 

assess the probable, rather than the nominal (design) capacities, strength reduction factors (in 

reference to NZ standards) equal to unity were used.  Where required, the post elastic (ductility) 

capacity was determined by limiting material strains, either in concrete or in reinforcing bars, 

depending on the expected failure modes, following FHWA (2006) guidelines. 

Shear demand was assessed from the overstrength in the plastic hinges.  Shear capacity within plastic 

hinges was assessed allowing for reduction due to the post elastic demand.  The shear capacity of the 

beam column joints were also investigated to determine if plastic hinges in the adjoining members can 

develop. 

4.2 Issues related to seismic assessment 

Some of the issues encountered during the seismic assessment and how these were dealt with are 

presented as follows:  

4.2.1 Availability and quality of information 

Since the majority of the bridges were designed by the old Ministry of Works, or its predecessors 

(Public Works Department), original drawings were available for most of the bridges.  In many cases 

these were “as-built” drawings.  Some of the drawings contained information on the soil conditions at 

the site (e.g., borehole logs or description of soils), material properties (usually design concrete and 

reinforcing steel strengths) and a schedule of reinforcing. 

The most common issues here were related to: 

1 A lack of information relating to soils. In these cases, soil parameters were assessed from 

geological maps, observations made during the site visit and / or information obtained from 

projects completed on nearby sites, if available.  A common issue was the lack of information 

needed to assess the susceptibility to liquefaction and effects of it, including the effects of 

lateral spreading.  Where critical, geotechnical investigations and laboratory testing were used 

to assess the ground conditions and assess ground performance; 

2 The degradation of strength due to aging e.g. corrosion of reinforcement, alkali silica reaction 

etc.  State highway bridges in New Zealand are generally well maintained and in all but few 

cases it was assessed that the effect of the above are minimal, and; 

3 Scour.  In certain cases it was necessary to consider the effects of the observed or historically 
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recorded scour on the seismic response of a bridge.  Many of the New Zealand rivers are 

braided and are also prone to sudden large changes in the volume and the speed of water 

within them.  River beds consist typically of gravelly materials, resulting in significant scour 

around foundations, sometimes in the order of several metres.  Ground levels on site, 

therefore, can vary from those shown in the drawings, affecting the stiffness of the bridge. 

4.2.2 Combination of bridge inertia loads with soil induced loads 

In addition to the inertial demands from the superstructure, the effects of surrounding soil movement 

were also taken into account. Where subsoil was susceptible to liquefaction under a design earthquake 

event, a displacement based approach was employed, in which the bridge was assessed for a set of 

ground displacement profiles representative of the ground movement during cyclic and liquefaction 

phases.  To account for the fact that the peak inertia load and the peak kinematic load are not likely to 

occur concurrently, a portion of the inertia demand was combined with the full kinematic loading due 

to ground movement.  Where the subsoil is not prone to liquefaction, only the soil inertia of the 

abutment backfill was considered.  

4.2.3 Travelling wave effect 

The effects of the “travelling wave” on longer bridges were analysed by assuming separate parts of the 

bridge responding in-phase or out-of-phase.  Currently, only Eurocode provides some guidelines to 

account for this effect in an assessment.  However, this was completed using a significant amount of 

engineering judgement and, hence the results may be subject to scrutiny. 

4.2.4 Modelling of expansion joints  

Most of the bridges analysed had one or more expansion joints.  While the “design” width of the gaps 

in these joints were shown in the original drawings, the actual widths can differ, as observed on site 

for many reasons: creep and shrinkage in concrete, ambient temperature, movement of the supports 

etc.  It was concluded that while the width of the gap assumed may have an effect on the sequence of 

events and the shape of the push over curve, it will not have a significant effect in the final conclusion 

regarding the seismic resistance of a bridge. 

4.2.5 Modelling and performance of hold down bolts  

Due to the detailing typical for NZ bridges, the hold down bolts under lateral loading are not likely to 

fail in simple shear.  Instead, bolts are likely to deform within the oversized holes and also resist the 

load by tension.  The capacity of the connection was assumed to occur either when the tensile capacity 

of the bolt or the local crushing of concrete around the hole edge occurs (Fischinger et al, 2013).  This 

mode of failure are considered to be favourable to the brittle type shear failure. 

4.2.6 Modelling and performance of linkage systems 

Linkages typically consist of rods with nuts and rubber washers at one or both ends (therefore, mostly 

a “loose” type).  Rods are installed through span end diaphragms and / or abutment back walls and / or 

pier shear keys.  Capacity of the linkage system was typically low, limited by either: axial capacity of 

the bars, flexural or shear capacity of the end diaphragms and/or abutment shear walls.  Low stiffness 

of the linkages (compared with the in-plane stiffness of the bridge deck) required explicit modelling of 

the former.  

4.2.7 Modeling of member Effective stiffness 

The relative stiffness of parts of the bridge determines where the inertia loads will migrate to.  This 

stiffness changes during the response history of the structure (non-linear soil springs, plastic hinging).  

While the varying stiffness can be modelled, it makes the analysis more complex.  Parts of the 

structure where plastic hinges are expected to occur were modelled using either distributed or lumped 

plasticity elements, while elsewhere an estimated constant value of effective stiffness was assumed. 
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4.2.8 Assessment of section and member capacities 

Two major issues were encountered relating to the assessment of the section / member capacities, 

including their post-elastic (ductility) capacity.  The first issue was the detailing of the existing bridge 

structure which, in many instances, did not comply with the requirements of the current design 

standards (inadequate reinforcement anchorage, lapping of bars within the plastic hinge regions, 

inadequate confinement, poorly detailed beam-column joints, lightly reinforced concrete sections and 

even total lack of reinforcing in members designed for predominantly gravity loads).  The other issue 

is that the design standards are exactly that – the Design Standards – and as such are not necessarily 

suitable for the assessment purposes, as they are inherently conservative.  It was therefore necessary to 

research various references, mainly the international standards related to assessment, and also use first 

principles and engineering judgement to assess the capacity of such members or sections.   

4.2.9 Consideration of shake off effects 

During the site inspections completed following the 2010 - 2011 Canterbury events, gaps between the 

piles, abutment retaining walls and / or pier walls and the surrounding soil were observed (Wood et al, 

2012).  These gaps, varying from a few millimetres to several centimetres wide, were an indication 

that the soil was irreversibly compressed by the movement of the bridge structure during seismic 

shaking.  It was concluded that modelling of the shake off effect, while excessively complex, would be 

questionable, considering uncertainty in the soil properties assumed.  The variation of the soil 

parameters (upper and lower bound) is judged to cover the above effects. 

4.2.10 Consideration of pounding effects 

The issue of the effects of pounding between parts of the bridge and how to model this is far from 

resolved.  It was judged that although localised damage is likely to occur in most cases, pounding is 

not likely to cause significant damage and/or collapse of a bridge.  On the other hand, pounding is 

likely to introduce additional damping in the system. 

4.2.11 Assessment of ULS versus CLS capacity 

In some instances it was not clear if a particular event (e.g. shear failure and / or reaching the ductility 

capacity of a pile) is an ULS or CLS event.  Shear failure of an abutment pile within a stable 

embankment may not lead to a collapse, but a similar failure of the pier column could.  Also, the 

ductility capacity of a plastic hinge limited by concrete cover spalling should not be considered as a 

CLS event, as a significant additional margin against collapse may be present (as long as adequate 

confinement to the main bars against buckling is provided).  Unlike the above, collapse may be 

inevitable if the capacity is limited by the low cycle fatigue in an under-reinforced element, or where 

spalling of concrete at a section causes a significant reduction in gravity load carrying capacity.  

Therefore, the extent of the damage and its effect on the stability of the bridge were considered to 

determine if the member is at its ULS or CLS capacity.  Inevitably, a substantial amount of 

engineering judgement is required to address the above. 

4.2.12 Liquefaction 

The assessment of the effect of liquefaction on the seismic response of a bridge is very complex.  In 

most instances this was allowed for by a reduction in soil stiffness and capacity, by making an 

allowance for negative skin friction on piles, through the investigation of the effects of total or 

differential settlement of foundations and by applying additional loads on abutment foundations due to 

lateral spreading. 

4.3 Issues related to seismic retrofit design 

Some of the issues encountered during the seismic retrofit design and how these were dealt with are 

presented as follows: 
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4.3.1 Inadequate ductility and or shear capacity of members 

Pier columns and other members above ground were typically strengthened by providing additional 

confinement to the potential plastic hinge regions or shear critical regions.  Confinement was provided 

by Fibre Reinforced Polymer (FRP) wrapping or by the installation of steel or concrete jackets.  

However, for instances below ground, such retrofit was practical only where access and / or traffic 

management were not prohibitive.  In many cases, the solution was to provide a retrofit that would 

reduce the demand on the critical elements or bypass them (via installation of new piles or sheet piling 

behind the abutments).  When installing new jackets, it was necessary to ensure that this did not affect 

the flexural capacity of the member and shift the plastic hinge to the part of the member outside the 

retrofitted element. 

4.3.2 Inadequate capacity of beam-column joints 

Providing additional shear (splitting) capacity of the beam-column joints by FRP wrapping is typically 

not practical due to the convoluted shape of the joints (there could be as many as four beams and a 

column joining together).  Instead the capacity was typically increased by the construction of 

reinforced concrete bolsters around the joint, or by additional post-tensioning of the joints. 

4.3.3 Inadequate capacity of hold down bolts and/or linkage systems 

This problem was resolved either by the installation of additional hold down bolts and / or linkages 

(sometimes requiring strengthening of the supporting elements), the installation of brackets and shear 

keys so as to bypass the inadequate hold down bolts, linkages, abutment back walls and deck end cross 

diaphragms, and / or the installation of steel “fish plates” connecting main steel girders to directly 

transfer deck inertia loads from one span to the other (bypassing the hold down bolts). 

4.3.4 Unseating 

In some cases, the demand on the existing hold-down bolts and linkages and their supporting element 

was just too big, the retrofit was not practical or would attract excessive loads onto the support.  In 

such cases, to protect the support, connections were allowed to fail and seat extenders were installed to 

prevent unseating of the span(s). 

4.3.5 Steel truss bridges 

A typical weakness of this bridge type are the bearings (fixed sliding or rocker).  Where the lateral 

capacity of these was inadequate, strengthening consisted of the installation of additional hold down 

bolts and steel stiffeners at the “fixed” bearings and shear keys at the sliding / rocking bearings.  Also 

in some cases, where the truss was acting as a strut between piers and the leading abutment, the 

strengthening of the bottom chord members (normally loaded in tension) was required to prevent 

buckling.  Strengthening of the cross bracing (typically designed for wind loading) was often required 

at bottom chord supported trussed spans where the deck is at the top chord level 

4.3.6 Steel girder bridges 

Steel girders integral (or not) with the concrete deck was a popular superstructure system in New 

Zealand, in particular during the 1960’s and 1970’s.  While the girders could be quite deep, for larger 

spans, transverse diaphragms are typically very light and do not have adequate capacity to enable 

transfer of the inertia loads from the deck to the girder supports.  Strengthening applied usually 

consists of the installation of additional transverse bracing (diaphragms). 

4.3.7 Dealing with more than one deficiency 

In some cases a global solution was considered as potentially cheaper than the retrofit of numerous 

separate deficiencies.  On a particular bridge, the solution adopted was to install large diameter bored 

steel encased concrete piles behind the abutments.  The effect was that these decreased lateral 

displacement of the bridge, reduced the load demand and / or post-elastic demand on critical elements 

and the likelihood of pounding and unseating.  However, while the cost of installation of the new piles 



7 

was lower than that of the alternative options (strengthening of individual members), the cost of traffic 

management and services relocations was very high, at almost half of the total retrofit cost. 

4.3.8 Finally - Liquefaction 

Retrofit to address the effects of liquefaction is very complex and usually expensive.  It requires much 

more room than this paper allows.  In most instances it has been accepted that the risk is there and that 

spending large amounts of money would be difficult to economically justify.  In some cases, ground 

improvement using stone columns, buttresses or soil nailing was used to protect the bridge abutments. 

5 A FEW EXAMPLES 

A few examples of details encountered during the project and of retrofit solutions are presented below. 

                        

Fig. 1: Example detail of hold-down bolts and linkages  Fig. 2: Unusual detail of extended piles 

                                             

Fig. 3: Example of pier column (note main bars bending detail)    Fig. 4: Example of abutment detail 

of integral bridge 

            

Fig. 5: FRP confinement of columns  Fig. 6: New shear keys and brackets  Fig. 7: New linkages 
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6 CONCLUSIONS 

The paper presents an abridged history of the Seismic Retrofit of New Zealand State Highway Bridges 

project that has been going on for the last 20 or so years.  Some of the issues and challenges 

encountered and solutions developed in due course are briefly discussed, together with the solutions 

for those.  In summary, from our experience: 

1 Seismic assessment requires a different mindset to that typically used in design.  There is no 

room for excessive conservativism so to avoid unnecessary, expensive retrofits.  Consequently 

existing design standards are not necessarily the best tools for this work. 

2 It is paramount that realistic load paths are identified and critical weaknesses identified.  There 

is no bigger nightmare for an engineer, and bigger loss for the community, than retrofitting of 

the wrong part of the bridge. 

3 Knowledge related to the response of structures to seismic shaking is increasing on a daily ba-

sis.  It is important to keep in touch with latest developments.  Our methodology used in the 

assessment is constantly changing, from one bridge assessment to another. 

4 Recent earthquakes (2010-11, Canterbury, 2016 Kumatoto/Kaikoura) provided a valuable op-

portunity to learn from the performance of bridges in real events.  Bridges performed general-

ly well (and better than predicted).  However, they performed poorly in areas subject to lique-

faction which highlights the importance to consider these effects.  This is a challenge given 

the cost of investigations and also our current understanding the issues; and finally 

5 There is no more fun for an engineer than doing this type of work. 
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