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ABSTRACT: A new seismic design manner, namely building mass damper (BMD), 

which comes from a combination of mid-story isolation and tuned mass damper (TMD) 

design concepts, recently attracts immense attention. In this study, an optimum building 

mass damper (OBMD) design approach, namely optimum dynamic characteristic control 

approach, is proposed to seismically protect both the superstructure (or tuned mass) and 

the substructure (or primary structure) respectively above and below the control layer. A 

series of sensitivity analyses and experimental studies on different parameters, including 

mass, frequency, and damping ratios, of a building designed with a BMD system were 

conducted. The test results verify the practical feasibility of the BMD concept as well as 

the effectiveness of the proposed OBMD design.  

1 INTRODUCTION 

The mid-story isolation design is recently gaining popularity owing to its advantages in terms of 

construction efficiency, space use, and maintenance over the conventional base isolation design. 

Previous researches have investigated the seismic responses of mid-story isolated buildings (Wang et 

al. 2012; Wang et al. 2013). It was indicated that the mid-story isolation design is effective in reducing 

the seismic demand of the superstructure above the isolation system if the coupling of higher modes is 

precluded. However, due to the flexibility of the substructure and the contribution of higher modes, the 

seismic response of the substructure below the isolation system may be enlarged.  

Tuned mass dampers (TMDs) have been recognized as an effective passive energy absorbing device to 

reduce the undesirable oscillation of the attached vibrating system (or primary system) subjected to 

harmonic excitation (Den Hartog 1956; Luft 1979). Various approaches for selecting the optimum 

design parameters of such a system have been developed. For instance, to minimize the steady-state 

response of the primary system, Den Hartog (1956) derived the close-form solutions for the optimum 

tuning frequency and damping ratio of a TMD system attached to an undamped system under 

harmonic excitation. After that, Warburton (1982) studied the optimum TMD design parameters for an 

undamped system subjected to harmonic external force and white-noise random excitation. However, 

all systems contain some damping in reality. Tsai and Lin (1993) studied the optimum TMD design 

parameters for a damped system by numerical iteration and curve-fitting procedures. Sadek’s criterion 

(1997) for seismic application was to select, for a given mass ratio, the tuning frequency and damping 

ratio that would result in equally large modal damping in the first two modes of vibration. 

The TMD design concept was first adopted to mitigate the wind-induced vibration or enhance the 

serviceability of high-rise buildings, and was subsequently adopted to enhance the seismic capability 

of building structures. Until now, the effectiveness of the TMD design in reducing structural responses 

subjected to seismic loading is still arguable (Sladek & Klingner 1983), especially when the tuned 

mass is much smaller than the primary structure. To overcome the concern of limited response 

reduction due to insufficient tuned mass in the conventional TMD design, a new design concept, 
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namely building mass damper (BMD), was proposed and numerically studied in some researches. In 

the BMD system, as implied in the name, a part of structural mass, instead of additional mass, is 

intended to be an energy absorber. Ziyzeifar and Noguchi (1998) utilized an isolation layer composed 

of elastic bearings and viscous dampers to isolate a part of the structure in a tall building for versatile 

design goals. One of the goals was to reduce the seismic response of the substructure below the 

isolation layer by means of significant and out-of-phase movement of the isolated superstructure as a 

vibration absorber. In addition, based on the numerical results of a 13-story building subjected to 

various seismic excitations, Villaverde (2002) indicated that the insertion of flexible laminated rubber 

bearings and viscous dampers between the roof and the rest of the building, namely roof isolation 

system, can effectively reduce the seismic response of the building. That is, the roof isolation system 

was designed to be a vibration absorber.  

The BMD concept has been applied to a few new constructions and retrofitted buildings; for instance, 

the Swatch Group Japan Headquarter in Tokyo and the Theme Building at the Los Angeles International 

Airport. However, among these applications, the control target was still focused on the substructure (or 

primary structure) performance rather than on either the superstructure (or tuned mass) performance or 

both. If the superstructure in the BMD design is intended to be used for occupancy as the substructure, 

excessive dynamic responses are not acceptable definitely. Under this circumstance, the seismic 

performance of both the substructure and superstructure should be paid attention. 

In this study, to combine the advantages of seismic isolation and TMD designs, an optimum design 

method for a BMD system is investigated. A building structure designed with a BMD system is 

rationally assumed to be represented by a simplified three-lumped-mass structure model. Referring to 

Sadek’s research (1997), the objective function is refined as that the three modal damping ratios 

obtained from the simplified structure model in the direction of interest are equally important and 

taken as an approximately equal value. Accordingly, the optimum building mass damper (OBMD) 

design parameters can be rationally determined based on the proposed optimum dynamic characteristic 

control approach. First, the influences of varied mass ratios and inherent damping ratios on the OBMD 

design parameters are quantitatively discussed. Then, a series of shaking table tests were performed to 

verify the feasibility of the BMD concept as well as the effectiveness of the proposed OBMD design 

on seismic protection of the building models.  

2 ANALYTICAL STUDY 

2.1 Simplified three-lumped-mass structure model 

In this study, the BMD system is intended to be installed upon a multi-story substructure (or primary 

structure). The system is essentially composed of a multi-story superstructure (or tuned mass) as well 

as spring and dashpot elements for connecting the superstructure to the substructure. The stiffness and 

damping designed for the BMD system, of course, are provided by the spring and dashpot elements, 

respectively. A simplified three-lumped-mass structure model, in which the three lumped mass are 

respectively assigned at the superstructure (SUP), control layer (CL), and substructure (SUB), is 

rationally assumed to represent a building structure designed with a BMD system, as shown in Figure 

1. For doing so, an excessive (or unreasonable) damping demand for the OBMD design owing to a 

significant superstructure-to-substructure mass ratio and neglect of flexibility of the superstructure can 

be precluded, which will be further discussed in Section 2.3. The equation of motion for the simplified 

structure model in the horizontal direction can be written as 
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where M = the generalized seismic reactive mass matrix; m1, m2, and m3 = the generalized seismic 

reactive masses for the fundamental mode of vibration computed for a unit modal participation factor 

of the substructure, control layer, and superstructure, respectively ; K and C = the horizontal 

generalized stiffness and damping coefficient matrices, respectively; k1 (c1), k2 (c2), and k3 (c3) = the 

horizontal stiffness (viscous damping coefficients) for the fundamental mode of vibration of the 

substructure, control layer, and superstructure, respectively; u = the horizontal displacement vector 

relative to ground; u1, u2, and u3 = the horizontal displacements of the substructure, control layer, and 

superstructure relative to ground, respectively; 
gu  = the horizontal ground acceleration; and R = the 

earthquake influence vector. The equation of motion given in Equation (1) can also be expressed in 

terms of the nominal frequency ω1, frequency (or tuning) ratio 
1iif   (i = 2, 3), mass ratio 

1mmii   (i = 2, 3), and component damping ratio 



3

ij

ijii mc   (i = 1~3), in which i and j = 1, 2, 

and 3 denote the substructure, control layer, and superstructure, respectively; and the nominal 

frequencies ω1, ω2, and ω3 are defined as 
1 1/k m , 

2 2 3/ ( )k m m , and 
3 3/k m , respectively. 

 
Figure 1. Simplified three-lumped-mass structure model for BMD design. 

2.2 Optimum design method based on modal characteristic control concept 

By means of the state space method under coupling approximation, the system matrix A for Equation 

(1) can be obtained. Accordingly, the complex eigenvalues can be calculated in a form of conjugate 

pairs. The proposed objective function to determine the OBMD design parameters in this study is 

modified from Sadek’s research (1997). Three modal damping ratios which are dominant respectively 

for response mitigation of the substructure, control layer, and superstructure in the direction of interest 

are equally important and are taken as an approximately equal value, i.e. 
1 2 3
' ' 'ξ ξ ξ  . Based on the 

proposed objective function with given ω1, μ2, μ3, ξ1, and ξ3, the optimum design parameters for f2, f3, 

and ξ2, i.e. 
2
optf , 

3
optf , and 

2
optξ , respectively, can be determined. 

2.3 Sensitivity analysis considering varied mass and damping ratios 

Assume that the mass ratios μ2 and μ3 vary within a reasonable range respectively from 0.1 (i.e. 

basically representing a high-rise substructure) to 0.5 (i.e. basically representing a low-rise 

substructure) and 0.1 (i.e. basically representing a low-rise superstructure) to 2 (i.e. the story number 

of the superstructure is twice as many as that of the substructure). Besides, assume that both ξ1 and ξ3 

are set to be 2% and 10% to correspondingly represent a bare structure and a structure with additional 

damping devices. Therefore, on the basis of the proposed objective function, the optimum damping 

ratio 
2
optξ  and the optimum frequency (or tuning) ratios 

2
optf  and 

3
optf  for the OBMD design varying 

with different μ2, μ3, ξ1, and ξ3 are calculated and shown in Figure 2. It can be seen that 
2
optξ , 

2
optf , and 

3
optf , in general, are proportional to μ2 and are inversely proportional to μ3. This trend is less 

significant when μ2 and μ3 become larger gradually. It is implied that a decrease of μ2 and an increase 

of μ3 may reduce the OBMD design demands. In addition, 
2
optξ  will increase when ξ1 is increased and 

will decrease when ξ3 is increased. Increasing ξ3 will lead to an increased demand of 
2
optf  while will 
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reduce the demand of 
3
optf . On the other hand, the variation of the optimum frequency ratios with 

different ξ1 is very sensitive to the mass ratios. When ξ1 is increased, the demand of 
2
optf  will 

generally decrease except for the nearly same trend at μ2 equal to 0.1, and the demand of 
3
optf  will 

decrease if μ2 is small and will increase slightly with larger μ2. 

In Sadek’s study (1997) and many past researches relevant to the TMD design, a simplified two-

lumped-mass structure model was usually utilized to study the optimum TMD design parameters. 

Under this circumstance, only one mass ratio, i.e. a total of μ2 and μ3, was required to be defined. It 

was rarely concerned whether the damping demand is reasonable and practicable if the mass ratio 

becomes larger. As shown in Figure 3, the dotted line represents the trend of the optimum damping 

ratio varying with respect to the mass ratio obtained from Sadek’s research (the inherent damping ratio 

is assumed to be 2%). It is found that the optimum damping ratio is proportional to the mass ratio, i.e. 

the larger the mass ratio, the higher the damping demand required. The solid lines represent the 

variation of the optimum damping ratio with different combinations of μ2 and μ3 when using the 

simplified three-lumped-mass structure model and the proposed optimum dynamic characteristic 

control approach (ξ1=ξ3=2%). Apparently, an opposite tendency that the optimum damping ratio, in 

general, is inversely proportional to the total of μ2 and μ3 but proportional to μ2 is observed. More 

importantly, a more reasonable and applicable damping demand can be obtained especially when μ2 

becomes smaller. 

   

 

 

   

 

 

   

 

 
Figure 2. Optimum damping and frequency ratios with respect to μ2, μ3, ξ1, and ξ3. 

  
Figure 3. Optimum damping ratio obtained in Sadek’s study (1997) and this study. 
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3 SEISMIC SIMULATION TESTS 

3.1 Test structure models 

The bare specimen was designed to be a 1/4 scaled 8-story steel structure model with single-bay 

widths of 1.5m and 1.1m respectively in the X and Y directions, as shown in Figure 4(a). Each floor 

was 1.1m high and each slab was 20mm thick. The columns and beams were wide flange with a 

sectional dimension of 100×100×6×8 (mm) and channel with a sectional dimension of 100×50×5×5 

(mm), respectively. Additional live load of 0.5kN-sec2/m simulated by mass blocks with a regular 

plane arrangement was assigned at each floor. 

Apart from the bare specimen, the BMD specimens were designed with a control layer (CL) at the 

fourth floor, as shown in Figure 4(b). In other words, the substructure (or primary structure) and 

superstructure (or tuned mass) were three- and four-story structure models, respectively. In this study, 

for simplicity and practical feasibility, elastomeric bearings (RBs) with a diameter of 180mm and 

linear fluid viscous dampers (FVDs) were rationally adopted to play the roles of spring and dashpot 

elements at the control layer, respectively. A series of BMD specimens, i.e. BMD-1 to BMD-7 as 

given in Table 1, were designed to further discuss the influence of varying design parameters on their 

seismic performance. BMD-2, BMD-1, and BMD-3, the first-group specimens, were intended to only 

have different f2 values in ascending order but the other design parameters remained the same. BMD-

4, BMD-1, and BMD-5, the second-group specimens, were intended to only have different f3 values in 

ascending order. BMD-6, BMD-1, and BMD-7, the third-group specimens, were intended to only have 

different ξ2 values in ascending order. 

The modal characteristics of the 8-story bare specimen, three-story substructure, and four-story 

superstructure were experimentally identified under white noise excitation. After obtaining the 

realistic characteristics, the optimum design parameters 
2
optf , 

3
optf , and 

2
optξ  for the OBMD specimen 

as shown in Figure 4(c) can be designed according to the proposed objective function with known ω1, 

μ2, μ3, ξ1, and ξ3, as detailed in Table 1. 

Table 1. Design parameters for all test and numerical structure models. 

Specimen ξ2 f2 f3 

Total stiffness 

at CL  

(4 sets of RBs) 

Total rubber 

thickness of 

RBs 

Total damping 

coefficient 

at CL  

(2 sets of FVDs) 

Sectional 

dimension of 

added braces at 

substructure 

(SUB) 

 
(%) 

  
(kN/m) (mm)  (kN-sec/m) (mm) 

BMD-1 22 0.28 0.25 3810.28 27 51.12 L70×70×6 (SUB) 

BMD-2 22 0.19 0.25 1740.52 19 34.56 L70×70×6 (SUB) 

BMD-3 22 0.35 0.25 5880.00 19 63.76 L70×70×6 (SUB) 

BMD-4 22 0.28 0.22 4905.20 20 58.00 L90×90×9 (SUB) 

BMD-5 22 0.28 0.28 3247.72 30 47.20 L60×60×5 (SUB) 

BMD-6 9 0.28 0.25 3810.28 27 20.92 L70×70×6 (SUB) 

BMD-7 35 0.28 0.25 3810.28 27 81.34 L70×70×6 (SUB) 

OBMD 25 0.30 0.28 1844.80 19 34.6 L60×60×5 (SUB) 

 

   
(a) Bare specimen (b) BMD specimen (c) OBMD specimen 

Figure 4. Experimental structure models. 
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3.2 Input ground motions 

Four recorded ground motions, denoted as El Centro, Kobe, TCU047, and THU thereafter, with 

various peak ground acceleration (PGA) levels were selected for the earthquake inputs of the uniaxial 

shaking table tests (i.e. along the X direction of the specimens), as summarized in Table 2. Since the 

specimens were assumed as a 1/4 scaled structure model, a time scale of 1/ 4  was considered for the 

earthquake inputs to meet the similitude law. Note that the maximum test PGA level was determined 

on the premise of the specimens remaining essentially elastic.  

Table 2. Earthquake test program. 

Test 

name 

Earthquake 

record 

Original  

PGA  

Test PGA 
Bare 

specimen 
BMD OBMD Original 

PGA 

El  

Centro 

El Centro/I-ELC270 

Imperial Valley, 

USA 1940/05/19 

0.35g 

80% 

160% 

240% 

V 

 

V 

V 

V 

V 

V 

V 

Kobe 

KJMA/KJM000 

Kobe, Japan 

1995/01/16 

0.83g 

40% 

60% 

80% 

V V 

V 

V 

V 

V 

V 

TCU047 

Chi-Chi/TCU047 

Chi-Chi, Taiwan 

1999/09/21 

0.40g 

80% 

160% 

240% 

V V 

V 

V 

V 

V 

V 

THU 

Tohoku/THU 

Tohoku, Japan 

2011/03/11 

0.33g 

50% 

100% 

150% 

V V 

V 

V 

V 

V 

V 

3.3 Influence of varying design parameters on seismic performance 

The maximum-acceleration ratio (AR1) and maximum-inter-story-displacement ratio (IDR1) of BMD-

2, BMD-3, BMD-4, BMD-5, BMD-6, and BMD-7 to BMD-1, as calculated respectively in Equations 

(2) and (3), at different floors excluding the control layer (or 4F) are shown in Figure 5.  

1 , 1,   BMD i j BMD jAR Max Acc Max Acc   (2) 

jBMDjiBMD IDMaxIDMaxIDR  ,1 ,1     (3) 

where the subscript i = 2~7 represent BMD-2 to BMD-7; the subscript j represents the jth floor (j = 

1~8); Max AccBMD-i, j and Max IDBMD-i, j represent the maximum acceleration and inter-story 

displacement responses at the jth floor of BMD-i (i = 2~7), respectively; Max AccBMD-1, j  and Max 

IDBMD-1, j represent the maximum acceleration and inter-story displacement responses at the jth floor of 

BMD-1, respectively. 

As observed from these figures, in general, decreasing f2 may cause enlarged acceleration responses at 

the substructure, while increasing f2 may result in enlarged ones at both the substructure and 

superstructure, particularly for lower stories of the substructure and upper stories of the superstructure. 

Decreasing f2 may cause enlarged inter-story-displacement responses at the superstructure, while 

increasing f2 may result in enlarged ones at the substructure. Increasing f3 may enlarge the acceleration 

responses of the substructure. Neither decreasing nor increasing f3 causes significantly enlarged inter-

story-displacement responses at the substructure and superstructure. It is of no surprise that the 

acceleration responses at both the substructure and superstructure of BMD-6 are larger than those of 

BMD-1 because of its smaller ξ2. However, when ξ2 becomes very large, e.g. ξ2=35% in BMD-7, it 

may not be very helpful and even slightly harmful to the acceleration control performance compared 

to BMD-1 (ξ2=22%). The influence of varying ξ2 on the inter-story-displacement control at the 

substructure is more significant than that at the superstructure. Among BMD-1 to BMD-7 under all the 

earthquake excitation, the maximum inter-story displacement response at the control layer is 20.5mm, 

which is corresponding to a shear strain of 75.93% for RBs. 
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Figure 5. AR1 and IDR1 of BMD-2, BMD-3, BMD-4, BMD-5, BMD-6, and BMD-7 to BMD-1. 

3.4 Comparison of seismic responses between bare, BMD, and OBMD specimens 

The vertical distributions of maximum acceleration and inter-story displacement responses of the bare 

and OBMD specimens under 50% THU are presented in Figure 6, respectively. To statistically and 

overall demonstrate that the OBMD specimen designed based on the proposed objective function can 

have a superior seismic performance to the bare and BMD specimens, the average maximum-

acceleration ratio (AR2) and average maximum-inter-story-displacement ratio (IDR2) of the bare and 

BMD specimens to the OBMD specimen, as calculated respectively in Equations (4) and (5), at the 

three-story substructure and four-story superstructure are shown in Figure 7. 

2 , , ,  (or  )  BMD i j Bare j OBMD jAR Max Acc Max Acc Max Acc  (4) 

jOBMDjBarejiBMD IDMaxIDMaxIDMaxIDR  , , ,2  ) or (    (5) 

where the subscript i = 1~7 represent BMD-1 to BMD-7; Max AccBMD-i, j, Max AccBare, j, and            

Max AccOBMD, j represent the maximum acceleration responses at the jth floor of BMD-i (i = 1~7), the 

bare specimen, and the OBMD specimen, respectively; Max IDBMD-i, j, Max IDBare, j, and Max AccOBMD, j 

represent the maximum inter-story displacement responses at the jth floor of BMD-i (i = 1~7), the bare 

specimen, and the OBMD specimen, respectively. Note that when the ratio is larger than unity and 

becomes higher, a better control performance of the OBMD specimen can be achieved. 

As observed from these figures, the seismic performance of the OBMD specimen is much better than 

that of the bare specimen. In addition, the OBMD specimen has a superior potential in reducing the 

seismic responses to the BMD specimens, especially for the acceleration control performance at the 

superstructure as well as the inter-story displacement control performance at both the substructure and 

superstructure. It is experimentally demonstrated that the proposed optimum dynamic characteristic 

control approach for the OBMD design is effective and necessary. Under all the earthquake excitation 

as listed in Table 2, the maximum inter-story displacement response at the control layer of the OBMD 

specimen is 12.2mm, which is corresponding to a shear strain of 64.2% for RBs.  

           
Figure 6. Vertical distributions of maximum responses of bare and OBMD specimens under 50% THU. 
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Figure 7. Average AR2 and IDR2 of bare and BMD specimens to OBMD specimen at SUB and SUP. 

4 CONCLUSIONS 

The objective function to determine the OBMD design parameters in this study is modified from 

Sadek’s research (1997) and derived based on a simplified three-lumped-mass structure model. The 

sensitivity analysis results show a different trend for the optimum damping ratio varying with respect 

to the mass ratio from Sadek’s study and many other past researches, i.e. the larger the mass ratio, the 

lower the damping demand required. Thus, by using the proposed optimum dynamic characteristic 

control approach to design a building with a BMD system, a reasonable and applicable damping 

demand can be obtained. The shaking table test results indicate that varying design parameters will 

cause entirely different seismic performances of a building with a BMD system. On the whole, 

moderately smaller f2 and f3 as well as larger ξ2 can have a better control performance. Undeniably, 

however, the seismic performance of the BMD design, like the conventional TMD design, is strongly 

related to the frequency content of the seismic excitation. In addition, the proposed OBMD design has 

a superior potential in reducing the seismic responses of both the substructure and superstructure to the 

BMD design, which demonstrates the effectiveness and significance of the proposed optimum 

dynamic characteristic control approach. Undoubtedly, the seismic performance of the proposed 

OBMD design is much better than a counterpart without any structural control technology. 

5 REFERENCES 

Den Hartog, J.P. (4th edn). (1956). Mechanical Vibrations, NY: McGraw-Hill. 

Luft, R.W. (1979). Optimum tuned mass dampers for buildings. Journal of the Structural Division, Vol 105: 2766-
2772. 

Sadek, F., Mohraz, B., Taylor, A.W. & Chung, R.M. (1997). A method of estimating the parameters of tuned mass 
dampers for seismic applications. Earthquake Engineering and Structural Dynamics, Vol 26(6): 617-635. 

Sladek, J.R. & Klingner, R.E. (1983). Effect of tuned-mass dampers on seismic response. Journal of Structural 
Engineering, ASCE, Vol 109(8): 2004-2009. 

Tsai, H.C. & Lin, G.C. (1993). Optimum tuned-mass dampers for minimizing steady-state response of support-
excited and damped systems. Earthquake Engineering and Structural Dynamics, Vol 23(11): 957-973. 

Villaverde, R. (2002). Aseismic roof isolation system: feasibility study with 13-story building. Journal of 
Structural Engineering, ASCE, Vol 128(2): 188-196. 

Wang, S.J., Changm K.C., Hwang, J.S., Hsiao, J.Y., Lee, B.H. & Hung, Y.C. (2012). Dynamic behavior of a 
building structure tested with base and mid-story isolation systems. Engineering Structures, Vol 42: 420-
433. 

Wang, S.J., Hwang, J.S., Chang, K.C., Lin, M.H. & Lee, B.H. (2013). Analytical and experimental studies on 
mid-story isolated buildings with modal coupling effect. Earthquake Engineering and Structural 
Dynamics, Vol 42(2): 201-219. 

Warburton, G.B. (1982). Optimal absorber parameters for various combinations of response and excitation 
parameters. Earthquake Engineering and Structural Dynamics, Vol 10(3): 381-401. 

Ziyaeifar, M. & Noguchi, H. (1998). Partial mass isolation in tall buildings. Earthquake Engineering and 
Structural Dynamics, Vol 27(1): 49-65. 


