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ABSTRACT: In multi-story shear wall buildings with gravity columns and slabs, 

structural walls serve as main lateral force resisting elements while the columns and 

concrete flat slabs (in-situ or post-tensioned) are only designed to carry gravity loads. 

However, the gravity system is required to have deformation compatibility with the lateral 

force resisting system. It is a common practice to assess seismic performance of the whole 

structural system based on the seismic behavior of isolated structural walls mainly because 

slabs and gravity columns have very low elastic lateral stiffness compared with the in-plane 

stiffness of structural walls. To scrutinize the effect of interaction between structural walls 

and gravity frames (via slabs), in this study, nonlinear static analyses are conducted on 

various prototype shear wall buildings and their responses are predicted. The system over-

strength of prototype buildings with different slab properties is examined. It is found that 

the wall, frame and slab interaction can induce substantial over-strength in the system, 

which can increase the shear demand on the structural walls. A simplified procedure to 

estimate the system over-strength is proposed in this paper. 

1. INTRODUCTION 

In typical structural design practice, because the performance of lateral-load-resisting systems is the 

main focus of (nonlinear) lateral analysis, floor systems are considered only as a source of mass and 

gravity loads. Therefore, the contribution of the floor systems (such as two-way in-situ or post-tensioned 

flat slabs) to the overall stiffness or strength of the building is often neglected.  

Bertero et al., (1984) performed shaking table tests on a 1/5 scale and a full scale multi-storey shear 

wall-frame building. Following these system-level testing, significant contribution of the flooring 

system (two-way slabs) to the ultimate lateral strength of the building was confirmed. They stated that 

the axial growth and rocking of the structural wall at its base (due to neutral axis movement) caused 

activation of a three-dimensional outrigging action in the surrounding space frames. This phenomenon 

was called three-dimensional effects. The induced outrigging action of the space frames should be 

accounted for in the design process. This phenomenon introduces extra over-strength to the system and 

it is highly dependent on the level of drift which can be achieved at ultimate limit state. Therefore, it has 

been called kinematic over-strength. Restrepo et al. (2007) also conducted another experimental 

investigation comprising of shake table tests of a slice of a multi-storey shear wall building including 

slabs and gravity columns. The authors noted that the main source of system base moment resistance in 

Westward direction at the DBE level shaking included three major components: i) 55% from the web 

wall moment capacity ii) 32% due to coupling of the web through the slotted slabs iii) 10% due to axial 

force in the perpendicular gravity columns. However, in real practice, a precise estimation of the over-

strength in multi-storey buildings is difficult since many factors are contributing to it. According to 

FEMA 450 (2003), the basic components of structural over-strength (Ω0) consists of material over-

strength (ΩM), system over-strength (ΩS), and design over-strength (ΩD).These components of over-

strength are presented schematically in Figure 1. This study focuses on addressing the effect of structural 

wall-slab-gravity column interaction on the system over-strength (ΩS) factor in typical multi-storey 

shear wall buildings. System over-strength (ΩS) is the ratio of the ultimate lateral force the structure is 

capable of resisting, Fn in Figure 1, to the actual force at which first significant yield occurs, F2 in Figure 

1. It is dependent on the amount of redundancy contained in the structure as well as any probable 

contribution of secondary components in resisting lateral force. Re-distribution of internal actions after 

ductile yielding in critical zones is another key parameter. 
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Figure 1. Factors affecting over-strength of a building (FEMA 450) 

The fundamental objective of the current design practice and capacity design of structural wall buildings 

is that energy is dissipated through the formation of plastic hinges at the base of shear walls while floor 

diaphragms remain elastic. The flooring system is vertically supported by a combination of shear walls 

and gravity resisting columns. The effects of over-strength are not always beneficial in capacity design. 

For example, the flexural over-strength of members leads to increased shear forces when plastic hinges 

forms which may result in non-ductile failure (Park, 1996). Therefore, any possible source of over-

strength in a building should be taken into consideration in capacity design.  

This paper attempts to investigate the system over-strength in multi-storey RC wall buildings with slabs 

in five cases of lateral-load-resisting systems: (i) case 1 has concrete structural walls only (zero out of 

plane flexural stiffness of slabs); and (ii) the remaining four cases have rectangular shear walls with 

slabs having different section flexural stiffness and/or varying bay lengths. This study intends to 

investigate the effects of bay length and out-of-plane sectional stiffness of slabs on the system over-

strength factor of shear wall buildings in the direction of walls in-plane. This study also proposes a 

simplified method to account for the over-strength factor in design. It also presents the results from a 

finite element analysis and discusses the influence of modeling RC slab elements on the predicted 

performance of shear wall buildings.  

2. MECHANISM RELATED TO WALL-FRAME-SLAB INTERQACTION  

This section explains the mechanism related to the wall-frame-slab interaction in the post-elastic phase. 

An eight-story building with a floor plan of 30 m by 18 m is used as the reference building. Typical 

floor plan of the multi-storey shear wall building, the wall section and the design information are 

illustrated in Figure 2. The gravity system of the building consists of 200 mm thick RC slabs and circular 

(500 mm diameter) RC columns. Five cases are used in this study; the same structural wall thickness is 

used in all cases. Typical story height is assumed to be 3.20 meter. The building is designed based on 

the design provisions defined in the NZ concrete structures standard (NZS3101-2006) and the NZ 

loading standard (NZS1170.5-2004).  

The deformation patterns of the whole system in the linear and non-linear phase are demonstrated in 

Figure 3. These figures illustrate only the system behavior in Y direction indicated in the building floor 

plan. Figure 4 also shows a schematic deformation of a representative flooring system due to rocking of 

an attached structural wall cross-sectional deformation. The connection between the flooring system and 

the structural walls significantly differs in construction practice due to variability in the flooring types. 

However, in this study typical rigid connection is assumed. 

For a given applied force pattern over the building height, tensile edge elongation or compression edge 

shortening of structural walls in the post-elastic response (due to the movement of neutral axis in 

monotonic loading and elongation (axial growth) of the wall in cyclic loading) triggers out-of-plane 

stiffness of the slabs (or other roofing/flooring systems). This interaction induces additional axial forces 

in the gravity columns, which can develop extra moment capacity in the system. In a ductile structure, 

roofing system (or flat floor slabs in this case study) will almost always be required to remain elastic, 

so that they can sustain their function of transferring forces to the main lateral load resisting elements, 
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and tying the building together. Therefore, diaphragms (slabs) should in principle have the strength to 

sustain the maximum forces that may be induced in them for a chosen yielding mechanism within the 

rest of the structure. 

 

           

 

Building floor plan 

   
          Wall base section 

 

Design information 

Figure 2. Building plan, wall section and design information 

  

Figure 3. a) Elastic deformation due to elastic curvature b) Plastic deformation due to plastic hinge rotation 

H: Building height 

h: Storey height 
Lw: Wall length 

Ly: Column distance to wall edge 

in Y direction 

ce : Center of section rotation (elastic) 

cyb : Base section neutral axis depth at effective yield  
cub : Base section neutral axis depth at ultimate 

θei: Rotation of storey level at effective yield 

θp: Plastic rotation of base and storey level 

Δvei: Vertical displacement of tension edge at 

effective yield 
Δvpi: Plastic vertical displacement of tension edge 

ϕyb= ϕyeff Base effective yield curvature 

ϕub: Base ultimate curvature 

                   

Figure 4. a) Deformation compatibility of wall and surrounding slabs in a typical floor b) slab to wall connection 

Ly 

Lx 
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2.1. Distribution of curvature over the height 

When the wall base section curvature reaches effective yielding curvature (equivalent to yielding of all 

reinforcement in the boundary element of the wall base section), the distribution of curvature over the 

height of the structural wall can be found at each story level by employing elastic theory. In this work, 

a continuous lateral load pattern with zero intensity at the base has been assumed over the building. The 

deformation pattern of a prismatic rectangular cantilever wall with constant flexural stiffness can be 

obtained satisfying the geometric and force boundary conditions. Hence, the inter-relation between the 

roof deformation and the base curvature can be established as a function of building height and a constant 

coefficient as: 

 ∆𝑟𝑜𝑜𝑓=
11𝐻2

40
∅𝑏𝑎𝑠𝑒                                                                                                                                  (1) 

It is also possible to find generic equations for the curvature and the rotation distribution over the height 

in terms of base curvature as a function of floor distance from the base (Z), which can be expressed as:  

∅(𝑍) =
𝑀(𝑍)

𝐸𝐼(𝑍)
=

∅𝑏𝑎𝑠𝑒

2𝐻3 𝑍3 −
3∅𝑏𝑎𝑠𝑒

2𝐻
𝑍 + ∅𝑏𝑎𝑠𝑒  , 𝜃(𝑍) =

∅𝑏𝑎𝑠𝑒

8𝐻3 𝑍4 −
3∅𝑏𝑎𝑠𝑒

4𝐻
𝑍2 + ∅𝑏𝑎𝑠𝑒𝑍                           (2)                                                                                

Therefore, the distribution of curvature and distribution of rotation in each storey level over the wall 

height (in each storey level) can be estimated by employing Equation (2) when the curvature at base 

section reaches the effective yield curvature. It is important to highlight that in a real multi-storey shear 

wall building the lateral load distribution is a discrete function over the building height. Hence, a 

correction factor is defined to adjust Equation (1) based on number of stories (n). Thus, the modified 

form of Equation (1) including the correction factor α (which is a function of the number of stories) 

turns out to be: 

∆𝑟𝑜𝑜𝑓=
11𝐻2

40
∅𝑏𝑎𝑠𝑒 × 𝛼                     α=0.835n0.0465                                                                                 (3) 

Given the fact that most multi-storey shear wall buildings commonly have 5 storeys and more, the 

application of Equation (1) induces a maximum of 10% error in the calculation, which is justifiable for 

practical purpose.  

2.2. Estimation of effective yield curvature and neutral axis depth 

An extensive parametric section-analysis is conducted to find the variation of effective yield curvature 

(and equivalent neutral axis depth) in the moment- curvature diagram. Moreover, the parametric study 

also investigates the variation of neutral axis depth when the section reaches its ultimate flexural 

strength. The effective yield curvature is determined using standard moment-curvature analyses. 

Although the realistic effective yield curvature of a section can change slightly due to tension stiffening 

of RC concrete, diagonal cracks and reinforcement bar slip, this study neglects them. The effective yield 

curvature, ϕyeff, is obtained from extrapolating the first-yield curvature, ϕy to a point where the moment 

reaches ultimate strength, Mu, assuming elasto-plastic response, or  

ϕyeff = (Mu/My)*ϕy                                                                                                        (4)  

where My is the moment resistance when first longitudinal rebar located in the boundary zone reaches 

εy and Mu is the ultimate (nominal) flexural strength, defined as the moment resistance corresponding 

to a concrete strain of 0.003 at the extreme compression fiber. 

Charts are generated to allow rapid estimation of the effective yield curvature of rectangular wall cross 

sections for a given axial force and section geometry. A typical chart is given in Figure 5 for a 

rectangular cross section. Also, Figure 6 displays the normalized neutral axis depth (measured from the 

extreme compression fiber to the neutral axis) when the section reaches its ultimate strength. It is evident 

from Figure 6 that the value of cub/Lw varies from 0.08 to 0.2 depending on boundary zone reinforcement 

and wall lengths for the range of axial forces considered here. However, the normalized neutral axis 

depth is insensitive to wall length 

2.3. Estimation of vertical deformation of wall edges 

Figure 7 demonstrates the detailed procedure to estimate the wall edge deformations in elastic and plastic 

states. The vertical deformation of wall at tension (left) and compression (right) side edges are 
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determined in each story level. Plastic deformation of wall edges due to plastic rotation at the base 

section is presented in Figure 7(b). The total tension (upward) or compression (downward) deformation 

of wall edges is equal to δti=Δvei+Δvpi where δti, Δvei and Δvpi represent the total vertical deformation, the 

elastic vertical deformation  and the plastic vertical deformation of the wall edge at storey i, respectively. 

In the proposed procedure shown in Figure 7, the wall edge vertical plastic deformations (denoted as 

Δvpi ) are estimated based on the value of base plastic rotation (θp), neutral axis depth (cub) and floor 

distance from the base (hi). The appropriate value of the base plastic rotation highly depends on 

appropriate selection of equivalent plastic hinge length and ultimate curvature. It will be discussed in 

the next section.    

        

  

Figure 5. Variation of effective yield curvature with different parameters 

.  

(a) 

 

(b) 

Figure 6. a) Effect of wall length on effective yield curvature b) Variation of neutral axis depth with different 

parameters at maximum flexural strength 

2.4. Slabs Contribution 

To simplify the hand calculation method, two-way slabs in each floor should be replaced with an 

equivalent elastic beam of an effective width. In a real structure, deformation compatibility of slabs with 

the cross-sectional rotation of the wall causes not only bending in each direction (curvature in both 

directions) but also torsional warping. However, we assume zero torsional stiffness for slabs to derive a 

simple hand calculation method. It is assumed that the equivalent width of slabs is equal to the bay 

length in each direction. Neglecting the contribution of axial force in the corner columns is another 

assumption which has been adopted in this study. By assuming a low flexural stiffness for gravity 

columns, the sub-assemblage which is representing slabs with an effective width can be replaced with a 

beam with a pin on the far end from the wall. The vertical deformations as well as cross-sectional rotation 

are prescribed as boundary conditions on the other end of equivalent beam where it is connected to the 

wall.  

2.5. Maximum moment capacity of the system  

Replacing z with the variable hi and φbase=φyeff in Equation (2), Equation (5) is obtained which gives the 
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elastic rotation of each storey. 

𝜃𝑒𝑖(𝑧 = ℎ𝑖) = (
𝜑𝑦𝑒𝑓𝑓

8𝐻3 ℎ𝑖
4 −

3𝜑𝑦𝑒𝑓𝑓

4𝐻
ℎ𝑖

2 + 𝜑𝑦𝑒𝑓𝑓ℎ𝑖)                                                                           (5) 

The total rotation of each storey (θi) is the summation of elastic rotation and plastic rotation in each floor 

level. Plastic rotation of all stories is equal to the plastic rotation at the base. However, the corresponding 

vertical plastic deformation in each storey is different.   

𝜃𝑖 = 𝜃𝑒𝑖 + 𝜃𝑝                       𝜃𝑝 = (𝜑𝑢 − 𝜑𝑦𝑒𝑓𝑓) × 𝑙𝑝                                                                   (6) 

Plastic rotation of the base can be found from the simplified plastic hinge analysis method (Equation (6) 

above). This equation uses the already established effective yield curvature (φeff) formulation; it needs 

an experimentally derived equivalent plastic hinge length (lp) and ultimate usable curvature of the base 

section (φu).  

 

a) Edge deformation when the base 

curvature reaches the effective yield 

Steps to estimate the deformation of wall edges at effective 

yielding 

1) Calculate the effective yield curvature at the base section using 

Equation 4 (or Figure 5) 

2) Calculate the rotation distribution at storey level using Equation 5 

3) Calculate the wall edge deformation as: 

Δve1(T)= Δve1(C)=(Lw/2).θe1                                                  storey 1 

Δvei (T)= Δvei (C)=(Lw/2).θei                                                   storey i 

 

Δvei(T), Δvei(C): Tension and Compression edge upward and downward 

deformation 

θei: Rotation at storey level i  

Lw: Wall length 

 

b) Edge plastic deformation 

Steps to estimate the plastic deformation of wall edges 

1) Calculate the effective yield curvature at the base section using 

Equation 4 (or charts) 

2) Calculate the ultimate usable curvature by NZS3101-2006 

provision and plastic hinge length equal to 0.3Lw  

3) Calculate the neutral axis depth (Cub) at the maximum flexural 

strength by moment-curvature analysis or use the chart proposed in 

Figure (6b): 

4) Calculate the wall edge plastic deformation 

Δvp0(T)=(Lw-cub).θp         Δvp0(T)=(cub).θp                              base  

Δvpi(T)=Δvp0(T)-hi.(1-cosθp)                                     storey i 

Δvpi(C)=Δvp0(C)-hi.(1-cosθp)                                     storey i  

Δvpi(T), Δvpi(C): Tension and Compression edge upward and downward 

plastic deformation 

θp: Plastic hinge rotation     

Cub: Neutral axis depth at maximum flexural strength  

hi:  Storey i height from the base 

Figure 7. Steps to estimate the elastic and plastic deformation of wall edges 

To find the cross-sectional rotation of a structural wall in each floor of a multi-storey building and the 

corresponding vertical deformation of wall edges due to arbitrary lateral force, we can use Equation (5) 

and Equation (6) along with the procedure presented in Figure (7) which results in the following 

expressions for the wall edges total vertical deformation in tension and compression side: 

𝛿𝑡𝑖 = (
𝜑𝑦𝑒𝑓𝑓

8𝐻3 ℎ𝑖
4 −

3𝜑𝑦𝑒𝑓𝑓

4𝐻
ℎ𝑖

2 + 𝜑𝑦𝑒𝑓𝑓ℎ𝑖) × (
𝐿𝑤

2
) + (𝐿𝑤 − 𝑐𝑢𝑏) × 𝜃𝑝 − ℎ𝑖(1 − 𝑐𝑜𝑠𝜃𝑝)                           (7)                 

𝛿𝑐𝑖 = (
𝜑𝑦𝑒𝑓𝑓

8𝐻3 ℎ𝑖
4 −

3𝜑𝑦𝑒𝑓𝑓

4𝐻
ℎ𝑖

2 + 𝜑𝑦𝑒𝑓𝑓ℎ𝑖) × (
𝐿𝑤

2
) + (𝑐𝑢𝑏) × 𝜃𝑝 − ℎ𝑖(1 − 𝑐𝑜𝑠𝜃𝑝)                                     (8) 

δti and δci are the total wall edge vertical deformation due to total sectional rotation of the structural wall 
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in each floor in tension and compression side respectively. Figure 8 illustrates the application of those 

deformations as an enforced boundary condition on the equivalent beams in Y and X directions. The 

beam to the gravity columns connections are treated as a pin end without any vertical flexibility. It 

implies that axial deformation due to induced axial force in gravity columns is overlooked. 

Figure (8b) demonstrates the schematic spatial representation of actions induced in the gravity columns. 

They generate additional storey moments in the each storey. This extra moment capacity is obtained by 

multiplying the axial force in the columns by their distance from center of wall section. 

 

 

Equivalent beam in Y direction (storey i) 

(a) 

 

(b) 

 

Equivalent slab in X direction (tension side) 

(storey i) 

(a) 

 

 

 

Equivalent slab in X direction (compression 

side) (storey i) 

(a) 

Figure 8. a) Enforced boundary conditions on equivalent beams b) Induced axial forces in gravity columns 

Figure 9 presents step by step procedure to find the induced actions in gravity columns due to the 

enforced boundary conditions on the equivalent beams. The proposed procedure accounts for the 

different boundary conditions in each storey level. The induced actions in tension and compression side 

of structural walls are estimated separately. The summation of all storey moments gives the total base 

moment resistance of the system as indicated in Equation (9) 

∑ 𝑀𝑐𝑜𝑙 = ∑ (
3𝐸𝐼𝑒𝑓𝑓𝛿𝑡𝑖

𝐿𝑦
3 +

3𝐸𝐼𝑒𝑓𝑓𝜃𝑖

𝐿𝑦
2 )(𝐿𝑦 + 𝐿𝑤/2) + ∑ (

3𝐸𝐼𝑒𝑓𝑓𝛿𝑡𝑖

𝐿𝑥
3 ) (

𝐿𝑤

2
) × 2 + ∑ (

3𝐸𝐼𝑒𝑓𝑓𝛿𝑐𝑖

𝐿𝑦
3 +𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

3𝐸𝐼𝑒𝑓𝑓𝜃𝑖

𝐿𝑦
2 )(𝐿𝑦 + 𝐿𝑤/2) + ∑ (

3𝐸𝐼𝑒𝑓𝑓𝛿𝑐𝑖

𝐿𝑥
3 ) (

𝐿𝑤

2
) × 2𝑛

𝑖=1                                                                                        (9)    

This additional moment capacity of the system at ultimate limit state can be normalized to the nominal 

wall flexural strength in order to establish the system over-strength as below: 

𝛺 =
𝑀𝑤𝑎𝑙𝑙−𝑛𝑜𝑚𝑖𝑛𝑎𝑙+𝑀

𝑤𝑎𝑙𝑙−ℎ𝑎𝑟𝑑𝑒𝑛𝑖𝑛𝑔+∑ 𝑀𝑐𝑜𝑙
𝑚
𝑖=1

𝑀𝑤𝑎𝑙𝑙−𝑛𝑜𝑚𝑖𝑛𝑎𝑙
 𝛺 = 1 +

𝑀𝑤𝑎𝑙𝑙−ℎ𝑎𝑟𝑑𝑒𝑛𝑖𝑛𝑔

𝑀𝑤𝑎𝑙𝑙−𝑛𝑜𝑚𝑖𝑛𝑎𝑙
+

∑ 𝑀𝑐𝑜𝑙
𝑛
𝑖=1

𝑀𝑤𝑎𝑙𝑙−𝑛𝑜𝑚𝑖𝑛𝑎𝑙
= 1.25 +

∑ 𝑀𝑐𝑜𝑙
𝑛
𝑖=1

𝑀𝑤𝑎𝑙𝑙−𝑛𝑜𝑚𝑖𝑛𝑎𝑙
  (10) 

𝛺 = 1 +
𝑀𝑤𝑎𝑙𝑙−ℎ𝑎𝑟𝑑𝑒𝑛𝑖𝑛𝑔

𝑀𝑤𝑎𝑙𝑙−𝑛𝑜𝑚𝑖𝑛𝑎𝑙
+

∑ 𝑀𝑐𝑜𝑙
𝑛
𝑖=1

𝑀𝑤𝑎𝑙𝑙−𝑛𝑜𝑚𝑖𝑛𝑎𝑙
= 1.25 +

∑ 𝑀𝑐𝑜𝑙
𝑛
𝑖=1

𝑀𝑤𝑎𝑙𝑙−𝑛𝑜𝑚𝑖𝑛𝑎𝑙
                                                                 (11)                                                                             

This normalization is adopted in the hand calculation method. However, in the finite element analysis, 

additional flexural strength due to strain hardening can be automatically included in the model by 

employing material laws with strain hardening of rebar and confinement effect of concrete. To compare 
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in a consistent manner, the value of material over-strength in hand calculation is assumed 25% higher 

than nominal flexural strength of walls. This procedure implies a consistent comparison between the 

finite element method and the simplified method.  

 
1) Calculate effective width of slabs in X and Y direction respectively : Lx and Ly 

2) Calculate shear force induced in the equivalent slab element in X direction at storey i: 

Vtix= (3EIeff* δti/Lx
3), Vtix= (3EIeff* δci/Lx

3) 

3) Calculate shear force induced in the equivalent slab element in Y direction at storey i: 

Vtiy=(3EIeff*δti/Ly
3+3EIeff*θi/Ly

2), Vciy=(3EIeff*δci/Ly
3+3EIeff*θi/Ly

2) 

4) Calculate total axial force in the storey columns in X direction:  

Ntix=∑Vtix , Ntix=∑Vtix 

5) Calculate total axial force in the storey columns in Y direction:  

Ntiy=∑Vtiy , Nciy=∑Vciy 

6) Calculate the storey moment of system due to axial force in the storey columns in X direction:             

Mtix= Ntix *(Lw/2), Mcix= Ncix*(Lw/2) 

7) Calculate the storey moment of system due to axial force in the storey columns in Y direction:            

Mtiy= Ntiy *(Ly+Lw/2), Mciy= Nciy *(Ly+Lw/2) 

8) Calculate the total storey moment of system due to axial force in the storey columns:                           

Mtit(T)= Mtix + Mtiy,  
Mcit(C)=Mcix + Mciy,  
Mi = Mtit(T) + Mcit(C) 

Figure 9. Proposed steps to calculate the induced actions due to deformation compatibility in each floor 

3. HAND CALCULATION METHOD 

The proposed simplified formulation is applied to a building prototype with the same slab length in two 

directions equal to 6 m and effective flexural stiffness equal to 0.25EIg which later has been named case 

2. Due to space limitation, the detailed information of hand calculation procedure is shown only for case 

2 in Table 2, Table 3 and Table 4. 

3.1. Estimation of the wall edges vertical deformation and sectional rotation 

The curvatures, elastic rotations, base plastic rotation and corresponding wall edges vertical deformation 

of the wall in each story level of the prototype building are calculated by employing the proposed 

method. The calculated values are shown in Table 2. In the following section, five more prototype 

buildings are analyzed to scrutinize the earlier explained three-dimensional spatial effects of slabs on 

the system behavior. 

3.2. Calculation of induced actions 

In this section, based on the values calculated for the vertical deformation of wall edges in tension and 

compression side as well as sectional rotation (Table 2), the induced actions are calculated in each storey 

by employing method proposed in Figure 9. Table 3 presents the value of axial force and their 

corresponding moments in each storey level. Table 4 summarizes the total base moment in each storey 

level and it is shown that the system-over strength is equal to 1.7 for this particular system.   

4. FINITE ELEMENT MODELLING 

Three-dimensional nonlinear finite element models are built using SAP2000 (CSI, 2014) for the 

prototype buildings to obtain their capacity curves. The seismic mass at all floors was assigned as 

distributed mass on walls. A rigid diaphragm is incorporated by slaving the translational degrees of 

freedom at each floor level. The foundation of the building was assumed as rigid, and P-delta effects are 

taken into account.  

4.1 Structural Wall Modelling 

Nonlinear shell elements representing the in-plane behavior of RC panels were used to model the 

rectangular walls. The confined and unconfined concretes were modeled differently, but the tensile 

strength of concrete was neglected. Concrete stress-strain relationship was based on Mander model 
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(Mander et al., 1988). The steel reinforcement stress-strain was bilinear model including strain 

hardening from ε=0.01. Slabs are modeled as elastic shell elements with stiffness values of EIeff = 

0.25EIg (flexural) and GA = 0.5GAg (shear). All slabs are assigned a specified concrete strength of f’c = 

30 MPa. Shear modulus (G) is calculated using a Poisson's ratio ν = 0.2. The columns are modelled as 

elastic beam elements with very low flexural stiffness. The elastic properties of the columns are 

calculated using the cross-section dimensions and the stiffness modification factors; i.e. EIeff = 0.01EIg 

(flexural), GA = 1.0GAg (shear). This approach can give us a transparent comparison between the 

models without interaction (case 1) and those with interactions (case 2-5).  

Table 2. Elastic and plastic vertical displacement of wall edges for case 2 

Storey section 
0 

(Base) 
1 2 3 4 5 6 7 

8 

(Roof) 

Curvature(φi) 

(1/km) 
0.71 0.7105 0.7151 0.7281 0.7536 0.7957 0.8585 0.9464 1.064 

Ɵei (rad) 0 0.0020 0.0037 0.0049 0.0058 0.0064 0.0067 0.0068 0.0068 

Δvei(T) (mm) 0 6.1787 11.1026 14.8318 17.466 19.1450 20.0486 20.3964 20.448 

Δvei(C) (mm) 0 6.1787 11.1026 14.8318 17.466 19.1450 20.0486 20.3964 20.448 

Ɵp(rad) 0.0192 - - - - - - - - 

Δvpi (T) (mm) - 97.767 97.179 96.592 96.003 95.415 94.827 93.651 93.063 

Δvpi(C) (mm) - 16.665 16.077 15.489 14.901 14.313 13.725 13.137 12.550 

δti (mm) - 103.35 107.694 110.835 112.881 113.972 114.288 114.048 113.511 

δci (mm) - 22.844 27.179 30.320 32.367 33.458 33.774 33.534 32.997 

Table 3. Extra moment due to induced actions in gravity columns in each storey for case 2 

Tension 

Edge δi(T)=Δvei+Δvpi 

(m) 

θi 

(rad) 

Vtiy 

(kN)
 

Vtix 

(kN) 

Ntiy =∑(Vtiy) 

(kN) 

Ntix =∑( Vtix) 

(kN) 

Mtiy 

(kN.m) 

Mtix 

(kN.m) 

Mtit(T) 

(kN.m) 
Storey 

8 0.11350 0.026 113.81 47.93 -113.81 -47.93 1024.33 287.61 371.09 

7 0.11405 0.026 114.00 48.16 -227.82 -96.10 2050.34 576.60 744.95 

6 0.11429 0.026 113.81 48.27 -341.63 -144.37 3074.65 866.21 1120.07 

5 0.11397 0.025 112.92 48.14 -454.55 -192.51 4090.92 1155.05 1493.62 

4 0.11288 0.025 111.04 47.68 -565.59 -240.19 5090.30 1441.15 1861.69 

3 0.11083 0.024 107.96 46.82 -673.54 -287.01 6061.89 1722.07 2219.42 

2 0.10769 0.023 103.48 45.50 -777.02 -332.51 6993.21 1995.06 2561.27 

1(Total) 0.10335 0.021 97.49 43.67 -874.51 -376.18 7870.62 2257.07 2881.18 

Compression 

Edge δi(C)=Δvei+Δvpi 

(m) 

θi 

(rad) 

Vciy 

(kN)
 

Vcix 

(kN) 

Nciy =∑(Vciy) 

(kN) 

Ncix =∑( Vcix) 

(kN) 

Mciy 

(kN.m) 

Mcix 

(kN.m) 

Mcit(C) 

(kN.m) 
Storey 

8 0.0330 0.026 79.79 13.91 79.79 13.91 718.15 83.49 371.09 

7 0.0335 0.026 79.98 14.14 159.78 28.06 1437.98 168.36 744.95 

6 0.0338 0.026 79.79 14.25 239.57 42.31 2156.11 253.85 1120.07 

5 0.0335 0.026 78.90 14.12 318.47 56.43 2866.20 338.57 1493.62 

4 0.0324 0.025 77.02 13.66 395.49 70.09 3559.40 420.55 1861.69 

3 0.0303 0.024 73.94 12.80 469.42 82.89 4224.81 497.35 2219.42 

2 0.0272 0.023 69.46 11.48 538.88 94.37 4849.95 566.22 2561.27 

1(Total) 0.0228 0.021 63.47 9.65 602.35 104.02 5421.18 624.11 2881.18 

 

4.2 Analysis Method 

Generally, the accuracy of pushover analysis in representing the structural seismic performance is 

debatable. However, this simple method provides a useful understanding of the expected behavior of 

the structures. Therefore, this study is based on the pushover analysis results. All analyses are performed 

with a gravity load of P=1.0D+0.25L.  
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Table 4. System over-strength due to interaction for case 2 

Storey 
Mi (total moment) 

(kN.m) 
Ωi 

8 2113.58 

7 4233.27 

6 6350.83 

5 8450.74 

4 10511.39 

3 12506.13 

2 14404.44 

1(Total) 16172.99 1.45+0.25=1.70 

4.3 Analysis Results 

The simplified hand calculation method which is proposed to account for system over-strength is 

verified for the five different cases. The slab flexural stiffness and geometrical dimensions of these cases 

are listed in Table 5. Typical floor plan and geometry of prototype buildings have been already defined 

in the section 2 and Figure 2. In all case studies, the structural wall properties are the same while the 

slab bay length and/or their flexural stiffness are varied. 

Table 5. Variables for different case studies 

Case slab flexural 

stiffness 

slab length in X 

direction(Lx)(m) 

slab length in Y 

direction(Ly)(m) 

1 0 6 6 

2 0.25EIg 6 6 

3 0.25EIg 6 8 

4 0.25EIg 8 6 

5 0.50EIg 6 6 

To scrutinize the application of the proposed simplified formula for over-strength estimation, the over-

strength of above case studies is calculated by employing the simplified hand calculation method as well 

as finite element approach. Cases 3 and 4 are selected to represent the effect of change in length of slabs 

(bay) in x and y directions, respectively. The out-of-plane stiffness of these two cases is the same as 

case 2. In case 5, the length of slabs is equal to case 1 while the out of plane stiffness of slab is doubled. 

In this paper, significant yield point is established when all reinforcement in the boundary element yield 

in tension or when the first boundary element in the mathematical model reached yielding state The 

numerical analyses results also are employed to address the importance of bay length as well as the 

flexural stiffness of slabs on the system-over strength factor. 

The predicted finite element analysis and hand calculated values of the system over-strength factor 

(together with the error) for all cases are presented in Table 6. It demonstrates that in the few case studies 

examined in this paper; the overall error in estimation of over-strength values is in the range of 10-15%. 

Table 6. Comparison of simplified and finite element method 

Case Ωfinite element Ωsimple Error 

1 0 0 0 

2 1.91 1.70 11.5% 

3 1.836 1.565 14.7% 

4 1.843 1.655 10.2% 

5 2.420 2.154 11.2% 

Two main assumptions may alter the predicted values: (i) First, the simplified method overlooks the 

presence of corner columns as one of the boundary conditions around the slabs. (ii) Second, the effective 

width of the slabs is assumed equal to the bay length in the proposed equations. It seems that both 

assumptions are crude and they require further investigation. The equivalent slab length can be changed 



11 

to find the best agreement with finite element calculation. However, to achieve robust values for the 

system over-strength the different arrangement of structural walls and slabs should be represented in the 

model. 

5. CONCLUSION 

This paper has explored the effect of wall-slab-gravity system interaction on the overall behavior of 

shear wall building systems. It has been re-confirmed through analytical and numerical investigation 

that the out-of-plane stiffness of slabs can induce some additional axial forces in gravity columns and 

this interaction can increase the system moment capacity and the corresponding over-strength of the 

whole structure. In all case study buildings the system-over-strength varied from 1.91 to 2.42 due to 

presence of slabs. However, it was also demonstrated that doubling the out-of-plane stiffness of slabs 

can increase the system over-strength by 27% . However, change in the bay length from 6 m to 8 m in 

any direction would reduce the system-over strength by only 5 %. It seems that value of Ω mostly 

depends on the flexural stiffness of the slabs to a large extent and bay length, to a small extent. This 

system interaction effect requires additional allowance in base shear demand calculation and shear force 

envelope proposed for the structural walls. 
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