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ABSTRACT: Many soil retaining wall structures are restrained from outward sliding 

movements and because of this it may not be appropriate to use the Mononobe-Okabe 

(MO) method to estimate the earthquake induced pressures on them. This semi-rigid or 

stiff wall category includes bridge abutments, building basement walls and hydraulic 

structures associated with hydro-power and flood control. 

In the present research, finite element analyses have been completed on cantilever walls 

that deform by both rotation about their base and flexure in the wall stem. The wall 

stiffness parameters have been varied to produce pressure distributions under earthquake 

and gravity loads for walls that vary from rigid to sufficiently flexible for the MO method 

to be applicable. 

The paper summarises the results of these finite element studies. An example is presented 

to demonstrate how the results can be applied in the earthquake design of semi-rigid or 

stiff walls.  

1 INTRODUCTION 

It is usual to simplify the complex problem of the interaction of earthquake generated elastic waves in 

the soil with wall structures by assuming that the earthquake ground motions are equivalent to 

dynamic inertia forces acting in the backfill mass. Dynamic pressures on the wall can then be 

estimated by analysing the wall and backfill modelled as an elastic continuum or failure wedge 

subjected to both gravity and horizontal body forces. The pressures that develop are very sensitive to 

the elastic flexibility of the structural components of the wall and the ability of the wall to move 

outward (rotation or translation) because of either permanent deformations in the foundation soils or 

inelastic behaviour of the structure. 

1.1 Wall deformation categories 

The behaviour of wall structures during earthquakes can be broadly classified into three categories 

related to the maximum strain condition that develops in the soil near the wall. The soil may remain 

essentially elastic, respond in a significantly nonlinear manner or become fully plastic. The rigidity of 

the wall and its foundations will have a strong influence on the type of soil condition that develops. 

Many low walls are of cantilever type construction. In this type of wall, lateral pressures from vertical 

gravity and earthquake forces will often produce sufficient displacement within the wall structure to 

induce a fully plastic stress state in the retained soil. In more rigid free-standing walls, such as gravity 

(e.g. reinforced earth and crib block walls) counterfort walls and building basement walls, a fully 

plastic stress state may develop as the result of permanent outward movement from sliding or 

rotational deformations in the foundation.  In cases where significant nonlinear soil behaviour or a 

fully plastic stress state occurs in the soil during earthquake loading, the well-known Mononobe-

Okabe, (MO) method (Mononobe and Matsuo, 1929) can be used to compute earthquake pressures 

and forces acting on the wall.   

Retaining structures that are not free-standing or have rigid foundations (piles or footings on rock or 

stiff soil) may not displace sufficiently, even under severe earthquake loading, for a fully plastic stress 

state to develop in the soil backfill. Particular examples of these types of walls include; bridge 
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abutments that may be rigidly attached to the bridge superstructure or founded on piles, basement 

walls that are an integral part of a building on a firm foundation, and closed culvert or tank structures 

embedded in the ground. For many of these types of walls, the assumptions of the MO method are not 

satisfied, and pressures and forces are likely to be significantly higher than given by its application. 

In some cases, the wall may be sufficiently rigid for the soil to remain elastic under combined 

earthquake and gravity loads. Theory of elasticity methods for estimating earthquake induced 

pressures on rigid walls have been presented previously by Wood, 1973. More generally, there will be 

sufficient deformation for nonlinear soil effects to be important or for wall pressures to be 

significantly lower than for a fully rigid wall. These intermediate cases or stiff walls are more difficult 

to analyse than the limiting cases of fully plastic or rigid elastic behaviour. The present paper 

addresses the issue of walls that are flexible but not sufficiently flexible for the MO assumptions to be 

valid (called stiff walls). The top deflection under gravity and earthquake loads of stiff walls is 

typically less than 0.3% of the wall height.   

1.2 Previous research 

Theory of elasticity solutions for cantilever fixed base walls that deform in flexure and for rigid walls 

that deform by base rotation were presented by Wood, 1973 and Wood, 1991 respectively.  Veletsos 

and Younan, 1997 presented approximate theory of elasticity solutions for both these types of walls.  

The finite element model used by Wood, 1973 for the flexural analysis of the fixed base wall is shown 

in Figure 1.  Earthquake loading was represented by a static horizontal body force assumed to be 

uniform throughout the soil layer and have magnitude Co, where Co is an acceleration coefficient and 

 the soil unit weight.  Gravity loading was represented by a body force of magnitude acting in the 

vertical direction.  The wall height was divided into 20 equal elements and the soil mass was divided 

into 29 elements along the length of the layer with a square mesh used for the six elements closest to 

the wall.  Plane strain rectangular elements with a second order displacement field were used.  The 

model was verified against the analytical theory of elasticity solution for a rigid smooth wall (Wood, 

1973).  

 

 

 

 

 

 

 

 

 

 

Figure 1. Finite element model for flexural analysis of cantilever wall. 

Veletsos and Younan obtained analytical solutions for wall pressures by assuming that both the 

vertical normal stresses and the vertical displacements in the soil were zero.  These assumptions limit 

the solution to the case when the soil is perfectly bonded to wall. 

Both the previous Wood and Veletsos and Younan analyses assumed the soil to have uniform elastic 

properties with depth and only considered the case when tension was not eliminated from the pressure 

distribution near the top of the wall.  Wood presented solutions for both a perfectly bonded contact 

between the soil and wall and a smooth wall. The Wood and Veletsos and Younan solutions based on 

elastic assumptions are an informative method of assessing the importance of the wall deformations 

and whether more refined nonlinear finite element analyses are necessary for stiff walls that have 
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intermediate flexibility. 

2 ANALYSIS ASSUMPTIONS 

Solutions more applicable to practical applications have been obtained in the present study for walls 

that deform by flexure in a cantilever stem and for rigid walls that rotate about their base using the 

Wood elastic finite element model shown in Figure 1 to analyse cases where tension in the normal 

pressure distribution acting on the wall is eliminated and to consider soils with both uniform and a 

linear increase of the elastic constants (shear modulus) from zero at the top of the wall to a maximum 

at the base.  

Rectangular plain strain elements were used to model the soil, and beam elements to model the wall. A 

Poison’s Ratio of 0.333 was assumed for the soil.   

Results for the walls deforming in flexure are presented in terms of a flexibility parameter dw defined 

by: 

𝑑𝑤 =
𝐺 𝐻3 

𝐸𝑤𝐼𝑤

                                                                                                                                                  (1) 

Where G is the average soil shear modulus, H the height of the retained soil layer, Ew is the Young’s 

modulus for the wall Iw the second moment of area for wall. 

Results for the walls deforming by rotation about the base are presented in terms of a flexibility 

parameter d defined by: 

𝑑𝜃 =
𝐺 𝐻2 

𝑅𝜃

                                                                                                                                                   (2) 

Where Ris the rotational stiffness of the base. 

3 PRESSURE DISTRIBUTIONS 

The normal pressure x on the wall deforming in flexure under the horizontal earthquake load 

(uniform body force in the soil) in both the soil with uniform and linear with depth soil elastic 

constants and for smooth and bonded wall assumptions are shown in Figures 2 to 5.  Corresponding 

pressure distributions for the rigid wall rotating about its base are shown in Figures 6 to 9. The 

pressure plots are presented in dimensionless parameters to enable them to be conveniently evaluated 

for any soil stiffness (shear modulus), soil unit weight, horizontal acceleration and wall height.  For a 

given flexibility ratio dw or d , the normal pressures are dependent on the acceleration coefficient Co, 

soil unit weight , and wall height H but are independent of the soil stiffness directly.  

 

 

 

 

 

 

 

 

 

    Figure 2. Flexure of smooth wall, uniform soil.     Figure 3. Flexure of bonded wall, uniform soil.  

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5

H
e
ig

h
t,

 y
/H

Dim Normal Stress, x / CoH

dw = 0125

10

40

20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5

H
e
ig

h
t,

 y
/H

Dim Normal Stress, x / Co H

dw = 0
1

2

5

10

20

40



4 

 

 

 

 

 

 

 

 

 

     Figure 4. Flexure of smooth wall, linear soil.      Figure 5. Flexure of bonded wall, linear soil. 

 

 

 

 

 

 

 

 

 

 
  Figure 6. Rotation of smooth wall, uniform soil.   Figure 7. Rotation of bonded wall, uniform soil. 

 

 

 

 

 

 

 

 

 

    Figure 8. Rotation of smooth wall, linear soil.    Figure 9. Rotation of bonded wall, linear soil 

4 WALL BASE ACTIONS 

The total force acting on the wall (or stem base shear) and the bending moment at the base of the wall 

were obtained by integrating the pressure distributions shown in Figures 2 to 9.  Shears and moments 

for flexural deformation in smooth and bonded walls and for soil with uniform and linearly increasing 

elastic constants with depth are shown in Figures 10 and 11 respectively. The corresponding base 

force actions for the wall deforming by base rotation are shown in Figures 12 and 13. 
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    Figure 10. Base shear, flexural deformation.  Figure 11. Base moment, flexural deformation. 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 12. Base shear, rotational deformation. Figure 13. Base moment, rotational deformation. 

The shears and moments shown in Figures 10 to 13 are plotted in dimensionless terms so that, as was 

the case for the normal pressures, they can be used to evaluate solutions for any values of Co,  and H. 

Superimposed on the plots are MO forces and moments calculated for a smooth wall assuming a soil 

friction angle = 35o.  MO values are plotted for acceleration coefficient values of Co = 0.2 and 0.5.  

Since the MO actions do not vary linearly with Co and are independent of dw and d, they are drawn as 

separate horizontal lines over a range of typical Co values used in design.   

5 WALL DEFLECTIONS 

Plots of the earthquake load displacement at the top of the wall, ut  for both smooth and bonded walls 

with uniform and linearly increasing elastic constants with depth are shown in Figure 14. The 

corresponding displacements for the wall deforming by base rotation are shown in Figures 15. The 

factor required to express the deflections in dimensionless form includes the soil shear modulus G in 

addition to Co,  and H. 

6 GRAVITY ACTIONS 

In practical applications it is necessary to combine earthquake and gravity load pressures. Gravity  
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 Figure 14. Top deflection, flexural deformation. Figure 15. Top deflection, rotational deformation. 

pressures for rigid walls can be calculated by the conventional at-rest assumption (pressure coefficient 

Ko = 1- sin, where  is the soil friction angle) or by assuming elastic theory which gives Ko = /(1-) 

where  is the soil Poison’s ratio.  For flexible walls, active Rankine pressure can be assumed but for 

stiff walls it is helpful to have results based on the elastic soil assumption consistent with the 

assumptions made for the earthquake pressures.  

Gravity load shears and moments for flexural deformation in smooth and bonded walls and for soil 

with uniform and linearly increasing elastic constants with depth are shown in Figure 16. The 

corresponding base force actions for the wall deforming by base rotation are shown in Figure 17. Wall 

top deflections for the linear soil constants are shown in Figures 14 and 15. Deflections are 

approximately the same for both the linear and uniform soil assumptions.  

 

 

 

 

 

 

 

 

 

 

 

    Figure 16. Gravity actions, flexural deformation.   Figure 17. Gravity actions, rotational deformation. 

7 STIFF WALL EXAMPLE 

To illustrate the application of the results presented for the fixed base cantilever wall an analysis of a 

U-section flood control channel is presented below.  The channel is based on the Wilson Canyon, San 

Fernando, California channel analysed by Wood, 1973.  A typical section is shown in Figure 18. To 

simplify the example presented here, it was assumed that the main flexural steel was detailed so that 

the base section of the wall was the most critical section. 
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The assumed input parameters and a summary of the computed results are given in Table 1. 

Table 1. Flood Control Channel Example 

Parameter Value Comment 

Input Parameters 

Wall stem height 3.0 m  

Stem thickness 0.25 m  

Cover to main reinforcement 50 mm  

Flexural reinforcement bar diameter 20 mm  

Flexural reinforcement bar spacing 250 mm  

Concrete strength, fc 35 MPa Assumed probable strength (25 x 1.4) 

Reinforcement yield strength 300 MPa Assumed probable strength (275 x 1.1) 

Backfill unit weight,  19 kN/m3  

Backfill friction angle 36o  

Friction angle for wall face 0o Smooth wall. Low friction expected in strong shaking 

Backfill ave Young’s modulus, E 15 MPa 
Linear: 0 at top increasing to maximum at base.  
Reduced to adjust for deformation from outward movement 

Backfill soil Poisson’s ratio,  0.333  

Backfill soil shear modulus, G 5.6 MPa Calculated from E and G = E/(2(1+)) 

Backfill soil shear wave velocity, V 54 m/s Calculated from G and V =  (G/(9.81*))1/2 

Design earthquake magnitude 7.5 Used to calculate displacement from plastic hinging in stem 

Design earthquake PGA 0.6 g Used to check the maximum  displacement from hinging 

Calculated Results 

Flexural tensile strength concrete, ft 4.4 MPa ft  = 0.75 fc1/2 

Cracking moment for stem, Mc 0.090 In dimensionless form (Mc/H3). Plane strain model 

Flexural capacity of stem, Mu 0.135 In dimensionless form (Mu/H3) 

Wall inertia moment at PGA, Mw 0.032 In dimensionless form (Mw/H3) 

Young’s modulus concrete, Ec 28 GPa Ec = 4700 fc1/2 

Moment of inertia for stem 0.0013m3 Based on uncracked section 

Cracking stiffness reduction factor 0.25 Based on Priestley et al, 1996 for cracked columns 

Flexibility ratio uncracked stem, dwu 4.2 Equation (1) 

Flexibility ratio cracked stem, dwc 16.8 Equation (1) 

Backfill active pressure coeff, KA 0.26 From soil friction angle. Smooth wall. 

MO active pressure coefficient, KAE 0.87 For PGA (Co = 0.60) 

Active pressure gravity moment 0.045 In dimensionless form 

Stiff wall gravity moment 0.06 Figure 16 (dw = 4.2). In dimensionless form 

Uncracked wall 1-g EQ moment 0.28 Figure 11 (dw = 4.2). In dimensionless form for Co = 1.0 

Cracked  wall 1-g EQ moment 0.16 Figure 11 (dw = 16.8). In dimensionless form for Co = 1.0 

Top deflection: 1-g EQ, cracked 0.50 
Figure 14 (dw = 16.8). In dimensionless form for Co = 1.0 

ut G/(CoH2): where ut = top deflection 

Top deflection: gravity, cracked 0.01 Figure 14 (dw = 16.8). In dimensionless form 

Moments at the base of the flood channel wall stem and the deflection of the top of the wall are plotted 

over the design range of the acceleration coefficient (0 to 0.6) in Figure 19.  The inertia moment from 

the wall stem has been added to the combined gravity and earthquake moments (G + E moments).  

This is a conservative approximation as the “free” inertia load from the wall will be reduced by 

interaction with the backfill. 
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Figure 19. Moment and deflection performance. 
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Figure 18. Flood control channel section. 

 

 

The performance curves show that the wall becomes cracked at an acceleration coefficient of 0.1 and 

reaches its flexural capacity at an acceleration coefficient of 0.43.  Over this range, the G + E base 

moment is approximately 13% greater than the base moment calculated using MO.  After the flexural 

capacity is reached, the wall will deform plastically with rotation at a plastic hinge at the base of the 

wall. Outward displacement beyond the critical acceleration coefficient of 0.43 was estimated using 

the Newmark, 1965 sliding block theory and adopting the Jibson, 2007 correlation equation for a 

displacement probability of exceedance of 16 %.  A top displacement of approximately 0.6% of the 

wall height was estimated at the design acceleration coefficient level of 0.6 indicating a displacement 

ductility demand on the wall of less than 2. This is a low demand compared to the ductility capacity of 

approximately five estimated from consideration of strain limits in the stem base. 

8 CONCLUSIONS 

The flexibility of a retaining wall has a significant influence on the earthquake-induced soil pressures. 

Methods of predicting earthquake pressures on rigid and flexible walls are well documented in the 

literature but there is limited published information on the analysis of stiff walls with flexibility 

intermediate between these limiting cases.  Were the wall geometry is relatively simple, the charts 

presented in this study should provide a convenient preliminary design method for stiff walls and also 

give an indication of whether significant nonlinear soil behaviour is likely and whether a more 

sophisticated finite element analysis is justified. 

The assumptions made regarding a rigid base and uniform body forces to represent the earthquake 

load are expected to be conservative in many applications and this needs consideration in design.   
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