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ABSTRACT: Recent Canterbury earthquakes have proven the inadequacy of the seismic 
design of current suspended ceilings. Significant financial loss was reported following the 
earthquake, as buildings were marked inoperable and businesses were interrupted during 
massive ceiling repairs or replacements. This highlights the need for an alternative ceiling 
system which is capable of avoiding losses of similar scale in future earthquakes. 

This paper presents research undertaken to investigate the feasibility of a ‘fully-floating’ 
ceiling system design. The system incorporates an unrestrained ceiling, suspended from 
the floor above via steel wires. These steel wires, effectively having no lateral stiffness, 
allow for the safe dissipation of seismic energy. The flexibility also prevents the transfer 
of seismic forces from the floor above to the ceiling grid, resulting in minimal stresses 
sustained by the ceiling grid during ground excitations. However, there will invariably be 
relative displacement between the floor and the ceiling. Gaps will hence need to be 
provided around the perimeter of the ceiling to accommodate the building’s drift 
movements. The system was modelled using simple pendulums. Effect of suspended 
mass, hanging length, excitation frequency and excitation amplitude on ceiling’s 
performance was evaluated. Analytical and experimental models were subjected to 
seismic excitations and qualitative conclusions were drawn on correlations between these 
factors and the likely response of a fully floating ceiling. 

Based on the results obtained, the proposed system at this stage looks feasible and able to 
meet the design requirements stipulated in NZS1170.5. The preliminary investigation 
indicates the need of a 0.15 m perimeter gap together with an elastomeric strip provided 
to limit damage in case the ceiling displacement demand exceeded the clearance 
provided. 

1 INTRODUCTION 

Building assessments following the 2011 Canterbury earthquakes reveal that current suspended ceiling 
systems in New Zealand handle seismic activity extremely poorly (MacRae et al. 2011).The failure 
and subsequent collapse of a ceiling not only poses a major threat to the lives of the building’s 
occupants, but also leads to substantial financial losses. These losses can make up to 14% of a 
building’s total repair cost for a representative RC office building as shown by Bradley (2009) and are 
then even further compounded by the loss of functionality of the building even when the structural 
integrity is intact.  

The type of seismic damage sustained by a ceiling varies between buildings. However, common trends 
include one or the combination of the following; Grid damage, Perimeter damage, Tile dropout and 
Interaction with mechanical services. 

There currently exist two main types of suspended ceiling systems. These are the ‘floating’ and the 
‘perimeter-fixed’ systems shown in Figures 1a and 1b respectively. Perimeter-fixed ceilings extend to 
the wall face and are attached to two adjacent walls (or to all four walls in some cases) by means of a 
riveted angle connection fixed to the surrounding structure. The ceiling grid is also hung by steel wires 
attached to the floor above. Floating ceilings, on the other hand utilise the same suspended mechanism 
but are instead braced to the above structure, using angled members. Both ceiling systems use fully-
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The second simplification was to only consider one-directional motion to reduce the time requirements 
of modelling, analysis and testing. This would also eliminate torsional effects which are difficult to 
model and quantify from a technical perspective, and arguably not required at this stage. Furthermore, 
the ceiling was assumed to be mounted on a rigid one-storey frame to avoid the inclusion of errors due 
to the effect of structural properties on acceleration propagation along height. 

2.1 Analysis 

The ceiling model shown in Figure 2 was analytically modelled using the Open System for Earthquake 
Engineering Simulation (OpenSees) software developed by McKenna et al. (2006) at the University of 
Berkeley. Ground motion excitations of the PEER format were applied to the model. 

2.2 Experiment 

The experimental setup of the pendulum model involves the use of the hydraulic shake-table at the 
University of Canterbury. The apparatus consists of incremental barbell weights, steel wire and 
fluorescent stickers required for the motion-tracking of the system. The wire is attached to the steel 
frame assembled on the hydraulic shake-table. It was then fed through a small hole before being 
looped around itself to create a simple pin joint. The shake-table is capable of replicating uniaxial pre-
recorded ground motion excitations as well as sinusoidal excitations within certain displacement and 
velocity limits. Testing schedules were carried out to investigate the effects of the parameters 
identified in Section 1, on the behaviour of the system; specifically the maximum displacement 
response and corresponding period of oscillation. All trials were recorded with a high-speed digital 
camera, which were then analysed using motion-tracking software developed by Hendrick (2008). The 
raw data produced from the motion-tracking software was then further analysed in Microsoft Excel to 
obtain displacement response histories for the suspended mass. 

3 METHODOLOGY 

Pre-recorded earthquake acceleration histories were obtained from the PEER Ground Motion Database 
(2011). Ground motions shown in Table 1 were chosen from a wide range of locations, dates and 
magnitudes so as to encompass variations in the local soil condition and fault type. 

Table 1. Ground motion records used in testing 

Location Year 
Richter 
Scale 

Magnitude 

Record 
PGA (g) 

Chalfant Valley 1986 5.8 0.06 

Chi Chi 1999 7.5 0.15 

Coalinga 1983 6.4 0.23 

Edgecombe 1987 6.6 0.04 

Imperial Valley 1940 6.9 0.31 

Kobe 1995 6.9 0.03 

Livermore 1980 5.8 0.07 

Loma Prieta 1987 6.9 0.10 

Lyttelton 2011 6.3 0.49 

Mammoth 
Lakes 

1980 6.1 0.42 

Northridge 1994 5.1 0.01 
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3.1 Analytical Modelling 

An OpenSees command file was written to model the pendulum approximation of the ceiling. The 
model contained a fixed displacement node which was free to rotate about one axis, representing a 
point on the one-storey rigid frame from which a hanging wire would be attached. A second node was 
then located directly below the first at a specifiable distance free to move both horizontally and 
vertically, to represent the lumped pendulum mass. The distance between the second and the first node 
represented the pendulum length. The two nodes were connected by a ‘truss’ element which was 
assigned the properties of a typical steel wire. The wire was given negligible stiffness in compression 
to mimic ‘slack’. The pendulum length was set to 0.5m. A mass of 10kg was used to represent typical 
600 by 600mm lightweight ceiling tiles weighing approximately 5kg with a hanger spacing of 0.9m. 
The model was then subjected to the ground motions shown in Table 1, with the excitations being 
applied at the pendulum base. In a real ceiling these excitations however will not be exactly the ones 
induced by the earthquake motion, as the structure modifies them when transferring the motion in 
height and through different elements. The lateral displacement of the pendulum mass, the base 
reaction force as well as the axial force within the pendulum were recorded for each simulation. 

3.2 Experimental Testing 

The four factors suspected to affect the behaviour of the pendulum system were each investigated 
separately. 

Mass 

The suspended mass values tested were 3kg, 5kg and 7.5kg. This range was specifically chosen to 
represent the varying weight of the ceiling tiles and hanger spacing. A constant wire length of 0.5m 
was used throughout the investigation. 

For each individual mass, the excitations applied by the shake-table were: 

Livermore - Scaled to 0.1g, 0.3g, 0.5g, 0.7g 

Lyttelton - Scaled to 0.1g 

Excitation Amplitude 

For a pendulum system with a constant mass and length of 5kg and 0.5m respectively, the Livermore 
ground motion excitation was scaled down to 0.1, 0.3, 0.5, 0.7 and 0.07g (unscaled) to investigate the 
effects of different excitation acceleration amplitudes on the response of the suspended mass. The 
procedure was also repeated with a different mass of 3kg.  

Length 

The experiments concerning the effect of pendulum length involved the testing of five different wire 
lengths ranging from 0.2m to 1.0m in 0.2m increments. A constant weight of 5kg was maintained 
throughout the experiments. For each length, the ground motions applied were; 

Loma Prieta - Scaled to 0.1g 

Chalfant Valley – Scaled to 0.1g 

Excitation Frequency 

Investigations into the effect of excitation frequency on the response behaviour of the pendulum model 
were conducted with sinusoidal excitations to evaluate the significance of resonance. 

For any given pendulum system, the natural period (T), frequency (f) and angular frequency (ω) are 
related by Equation 1. 

g
l

f
T

nn
n π

ω
π

2
21 ===                             (1) 

Where l is the pendulum length in meters and g is the gravitational constant. 

For the phenomenon of resonance to occur, the excitation frequency must be close to that of the 
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The distribution of results in Figure 10 indicates an asymmetrical relationship when considering the 
distribution about a frequency ratio of 1.0.Firstly by examination of the peak displacements obtained 
from the frequency ratio range of 0.6 to 1.0, displacements seem to be increasing in a linear fashion 
with a steep gradient. A decreasing linear trend can be seen in the 1.2 to 1.6 frequency ratio range. 
However, there is a significant drop between values with a similar albeit negative slope. At this stage 
it is difficult to conclude the exact relationship between excitation frequency ratio and displacement 
response; however it is clear that the phenomena of resonance drastically amplifies the displacement 
response. 

5 CONCLUSIONS 

As the proposed floating ceiling design is essentially a uniform arrangement of multiple hangers, the 
results obtained from these preliminary investigations are to an extent, expected to apply to the full 
design. 

The analytical modelling of a single ceiling hanger suggested the ceiling would remain in place with 
zero absolute displacement regardless of the excitations applied to the slab above. However, the 
experimental testing with a hydraulic shake-table demonstrated that this was not the case. 

Based on the results presented, resonance has a strong influence on the peak displacement of the 
model. The effect of resonance is observed in ground motion excitation depending on the frequency 
content information provided by Fourier amplitude of the ground motion at the model’s natural 
frequency. 

The effect of mass on the response of the model was found to only be minor. Upon the increase of the 
suspended mass from 3 kg to 5 kg, only an average difference of 8 mm was observed. In addition the 
period of oscillation remained unaffected. 

Upon increasing peak acceleration for a given ground motion excitation, a positive linear correlation 
with peak displacement response was observed. However this trend is not absolute as the peak 
displacement of the model was shown to be a function of both peak acceleration and frequency 
content. 
To interpret what these outcomes mean to actual ceilings, a typical maximum hanging length of 0.5m 
is assumed so as not to impede on the available inter-storey height. The design response coefficient 
was calculated for a building in Christchurch, for which the resulting design response acceleration de-
termined to meet serviceability requirements was 0.17g. By comparing this with the peak accelerations 
applied in the tests and the resulting peak displacements the approximate peak displacement to be ex-
pected from this would be no greater than 0.15m. This conclusion is only relevant to the case and con-
ditions provided in this study. Further investigation into the effect of the modified motions from the 
structure is needed to make more firm conclusions. In the meantime and for the experiment presented, 
providing a gap of up to 0.15m around the ceiling’s perimeter is within reasonable limits and hence it 
can be concluded that the concept of a fully floating ceiling system is feasible in meeting serviceability 
limit state requirements. It is proposed that the perimeter gap be covered by an architectural angle. In 
order to provide a degree of redundancy to the ceiling system an elastomeric strip can be affixed to the 
angle at the possible point of contact between the ceiling and wall. This would serve to dissipate ener-
gy and hence reduce potential damage should the displacement of the ceiling attempt to exceed that 
provided by the perimeter gap in severe earthquakes. 
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