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ABSTRACT: This research investigates the structural health monitoring of nonlinear 

structures after a major seismic event. It considers the identification of flag-shaped or 

pinched hysteretic behaviour in response to structures as a special, perhaps more general, 

case of a normal hysteretic curve without pinching.  

The method is based on the overall least squares solution and the asymptotic distribution 

theory of log likelihood ratio. In particular, the structural response is divided into 

different loading and unloading half-cycles. The overall least squares analysis is first 

implemented to obtain the minimum residual mean square of each half-cycle regression 

model with the number of segments assumed. Then the log likelihood ratio test is 

proposed to assess the likelihood of these nonlinear segments in the presence of noise. 

The least square fit is finally used for identified segmented regression models to obtain 

elastic stiffness, plastic stiffness, yielding deformation and energy dissipation parameters. 

The performance of the proposed method is illustrated using a single degree freedom 

system and a suite 20 earthquake records. The simulations for this proof of concept 

include 10% added noise.  

The proposed method is computationally efficient and accurate in identifying nonlinear 

hysteretic structures. These parameters are within 6% average (standard deviation of 

10%) of the known values. These results indicate that the system is able to capture highly 

nonlinear behaviour and structural parameters directly relevant to damage and 

performance using a computationally efficient and simple method. Finally, the method 

requires no user input and could thus be automated and performed in real-time for each 

half cycle.  

1 INTRODUCTION 

Under conventional seismic design strategy, civil engineering structures are designed to experience 

inelastic deformation to dissipate earthquake energy, which leads to inevitable residual displacements. 

Residual deformation increases the repair cost and downtime, as well as the difficulty in recovering 

the structure system to the initial position. To solve this deficiency, a large number of self-centring 

systems and devices, which exhibit a flag-shaped hysteretic behaviour, have been developed to avoid 

residual deformation and provide energy dissipation capacity, such as post-tensioned beam-to-column 

connections for moment-resisting steel frame (Christopoulos et al. 2002a, Rodgers et al. 2008), steel 

brace dissipating elements (Bartera et al. 2004, Tremblay et al. 2008) and shape memory alloys (SMA) 

seismic isolation device  (Dolce et al. 2007, Ozbulut et al. 2011). The seismic application of these 

flag-shaped hysteretic structures has increased since the 1994 Northridge earthquake in the United 

States and 1995 Hyogoken-Nambu earthquake in Japan. These structures can still experience various 

degrees or types of damage under extreme excitation. Real-time or rapid structure health monitoring 

(SHM) can enable the damage state of the structure to be determined, further enabling a more 

optimum recovery planning after an event. 
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Many current vibration-based SHM methods are based on the idea that modal parameters change, such 

as natural frequency, mode shapes and damping, as a result of structural damage (Doebling et al. 

1996). However these methods are not robust in the presence of noise and not sensitive to localized 

damage (Farrar et al. 1994). Further, these method are more applicable to structures where vibration 

response is highly linear (Chase et al. 2005a).  

Damage identification methods based on Eigensystem Realization Algorithm (ERA) are also 

commonly used for SHM (Lus et al. 2003). The ERA method is based on knowledge of the time 

domain free response data. These off-line approaches require the entire measured response to process 

and identify damage and the results might not be immediately available after an event. Adaptive H∞ 

filter techniques (Sato et al. 1998) and adaptive fading Kalman filter methods (Loh et al. 2000) can 

achieve real-time or rapid results. However, they have significant computational cost and complexity. 

Finally, LMS-based methods have been used for a benchmark problem (Chase et al. 2005a), and also 

for a highly nonlinear rocking structure (Chase et al. 2005b) to directly identify changes in structural 

stiffness only. A modified LMS-based method is used to identify both changes in stiffness and plastic 

deflection (Nayyerloo et al. 2011). However, these LMS approaches are not as effective for nonlinear 

yielding structures. 

This study develops a novel and simplified method to identify the physical parameters that are directly 

related to structure health monitoring for a flag-shaped hysteretic structure. The performance of 

proposed method is demonstrated and validated using a simulated flag-shaped hysteretic system. The 

effect of measurement noise on results is investigated by adding 10% RMS noise to the measured 

response. The robustness of the results is evaluated using a suite of 20 different earthquake records. 

2 METHOD 

2.1 Equation of motion 

The equation of motion of a single degree of freedom (SDOF) is given by: 

  gxmxFxcxm    (1) 

where x, x and x  are the displacement, velocity and acceleration of the SDOF system; m is the mass of 

the system; F(x) is the restoring force of the hysteretic system; and x g is the ground acceleration;  c is 

the viscous damping coefficient with equation: 

T

m
c

4
  (2) 

where ξ is the initial fraction of critical damping; T is the time period of the system. 

 Using Equation (2), Equation (1) can be rewritten: 

  x
T

m
xxmxF g 

4
)(    (3) 

In this equation, the acceleration x  and x g can be measured, the velocity and displacement can be 

obtained from measured acceleration by integration and correction or a range of sensors and methods. 

Assuming m, ξ and T to be available from the basic knowledge of the system, the value of the restoring 

force F(x) is consequently obtained. The hysteretic loop of the system can then be constructed. 

2.2 Hysteretic Model 

Figure 1(a) shows the flag-shaped force-displacement relationship that is representative of a self-

centring system hysteretic behaviour. The parameters characterizing the properties of this hysteretic 

model are α, β and dy. The coefficient α is the ratio of post-yielding stiffness to pre-yielding stiffness. 

The energy dissipation coefficient β reflects the dissipation capacity. And dy is the yield displacement 

of the hysteretic system. It can be seen that the total restoring force is path dependent. However, 
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within a time segment where the velocity holds the same sign, the restoring force is a single valued 

function of displacement. Hence, the whole hysteretic response can be sliced into many sub-half 

cycles according to the turning points, such as x4 and x8, where the velocity is zero.  

All the sub-half cycles are then divided into four types of piecewise linear model with one, two, three 

and four segments respectively, as shown in Figure 1(b). If the numbers of segments of these 

piecewise linear models could be identified, then the overall least squares solution (Hudson 1966) can 

be implemented to these linear models and the estimated coefficient of the piecewise linear model will 

then be related to the system parameters.  

 

                                     (a)                                                                                           (b) 

Figure 1. (a) Idealized flag-shaped hysteretic loop, (b) with four types of sub-half cycles 

2.3 Identification procedures 

First, assuming the segments number of the sub-half cycles is r, the r-phase linear model is then 
defined by (Hudson 1966):  
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where Xt
1
,…,Xt

r-1
are the breakpoints in the sub-half cycles, as shown in Figure 1(b); (X1 , Y1),…, (Xn , 

Yn) are n pairs of displacement and restoring force data during the sub-half cycles, and can be 
represented by: 

nieXGY iii ,...,1)(   (5) 

where ei is the random errors caused by measurement noise or model uncertainty. Suppose ei are 
normally and independently distributed with zero mean and standard deviation σ

2
. Then the overall 

residual sum of squares for r-phase linear model is determined:  
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The optimum approximate solution to the r-phase linear model is to find the best estimate values of 
Xt

1
,…,Xt

r-1
 to minimise R.  

The derivative equal to zero of Equation (3) cannot be used here due to the discontinuous nature of the 
breakpoints. Thus, the data are divided into every feasible r groups. For each r groups, the standard 
least linear regression are implemented to obtain the model coefficient a1,b1,…,ar,br. Then the 
breakpoints (Xt

1
,…,Xt

r-1
) are computed and the residual sum of squares is noted when Xi≤ Xt

i
≤ Xi+1. 

And the solution is the values of Xt
1
,…,Xt

r-1
 that correspond to the smallest value of R. 

Second, the likelihood-ratio chi square test is used to test the segment number of the sub-half cycles. 
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The hypothesis test is performed between H0: there are r segments in this piecewise linear model and 
H1: there are r +1 segments in the model. Let λ denote (Rr+1/ Rr)

n/2
 , then the large sample distribution 

of the likelihood ratio -2logλ is a chi-squared distribution with 2(r+1) degrees of freedom when the 
null hypothesis is true (Feder 1975). Therefore, it permits the rejection of H0 in favour of H1 when 

)(log2
2

k


   (7) 

where P(-2logλ≥χ
2

α(k)|H0)=α; k is the number of degrees of freedom. 

In this study, the significance level α is set to 0.001 and k=2(r+1) for r phase model identification. If 

the value of likelihood ratio is less than χ
2

α(k), it suggests that there is no strong evidence against H0 

and it is concluded the sub-half cycle is an r phase model.  

The pre-yielding stiffness ke and post-yielding stiffness kp can be obtained directly by the regression 

coefficients of the piecewise linear models identified. And the breakpoints are used to compute the 

estimates of yield displacement dy and energy dissipation coefficient β.   

The step-by-step procedure is summarized below: 

1
st
 step: Assume r=1and r=2 for all the sub-half cycles respectively, and compute R1, a1 and b1 for r=1 

and R2, Xt
1
, a1, b1, a2 and b2 for r=2.  

2
nd

 step: Compute the likelihood ratio -2logλ for every sub-half cycle and decide the linear sub-half 

cycles by Equation (7), i.e. -2logλ<χ
2

0.001(4) =18.47. 

3
rd

 step: Assume r=3 for all the nonlinear sub-half cycles, and compute R3, Xt
1
, Xt

2
, a1, b1, a2, b2, a3 and 

b3 for r=3. Then compute -2logλ and get the two segment sub-half cycles by -2logλ<χ
2

0.001(6) =22.46. 

4
th
 step: Assume r=4 for the unidentified nonlinear sub-half cycles, and compute  R4, Xt

1
, Xt

2
, Xt

3
, a1, b1, 

a2, b2, a3, b3,  a4 and b4 for r=4. Compute -2logλ and identify the three segment sub-half cycles by -

2logλ<χ
2

0.001(8) =26.12. The remaining sub-half cycles are then determined as four segment sub-half 

cycles. 

5
th
 step: Estimate physical parameters ke , kp ,dy and β using Xt

1
,…,Xt

r-1
 and a1,b1,…,ar,br. 

3 SIMULATED PROOF-OF-CONCEPT STUCTURE 

The simulated proof-of-concept structure is a SDOF system that is a representative of a seven storey 

steel moment resisting frame incorporating post-tensioned energy dissipating connections both at all 

beam-to-column connections and at the base of each column (Christopoulos et al. 2002b). The 

structure has a mass of 4000kN and a first period of 1.0s. A 5% constant viscous damping is 

considered in simulating the structural response. The system behaving flag-shaped hysteretic response 

has a pre-yielding stiffness of ke=157.9kN/mm, a post-yielding stiffness of kp=23.685kN/mm, yield 

displacement of dy =24.85mm, and energy dissipation coefficient of β=0.5. 

The proposed identification procedure was implemented in Matlab. The simulated structure was 

subjected to the Loma Prieta earthquake Hollister Differential Array record with peak ground 

acceleration (PGA) of 0.269g. The system acceleration response was simulated using the Newmark-β 

integration method. A separate white noise with 10% RMS was added to the simulated acceleration to 

mimic a more realistic measurement situation. The displacement and velocity were estimated by the 

low-frequency-measured displacement corrected acceleration integration method (Hann et al. 2009). 

In this case study, the low-frequency-measured displacement was taken at 1 Hz and acceleration data 

was taken at 1000Hz. 

To assess the robustness of the proposed method over different ground motions, the simulated 

structure was subjected to a suite of 20 different ground motions (Christopoulos et al. 2002b)The same 

identified parameters were used for all of the records and 10% RMS noise was added to the simulated 

acceleration and displacement measurements. 
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4 RESULTS AND DISCUSSION 

Figure 2 shows the identification results for one segment sub-half cycles. The values of -2log λ for one 

segment sub-half cycles are all less than χ
2

0.001(4) and do not permit the rejection of the one segment 

model hypothesis by Equation (7). Thus, the sub-half cycles below the rejection value were identified 

as one segment linear models or simply linear structures.  

 

Figure 2. Identification of one segment sub-half cycles 

As shown in Figure 3 and Figure 4, the values of -2log λ for two and three segment sub-half cycles are 

below the rejection value of χ
2

0.001(6) and χ
2

0.001(8), respectively. The sub-half cycles above the 

rejection value in Figure 4 were identified as four segment linear models with a full flag response. 

 

Figure 3. Identification of two segment sub-half cycles, excluding the half cycles found to be one segment 

 

Figure 4. Identification of three and four segment half cycles, excluding one and two segment half cycles 

Finally, the segment numbers of all the sub-half cycles were identified and then the physical 

parameters of structure were obtained in each case using the overall least squares solution. During the 

earthquake excitation, some sub-half cycles have a very narrow almost negligible plastic part. These 

small plastic responses have a limited impact on the damage assessment, but affect the accuracy of the 

parameters estimates. Thus, the displacement increment of the plastic part was used as a threshold to 

ignore these narrow sub-half cycles for the estimation of the damage parameters. And the effect of 

ignoring these sub-half cycles on the results was investigated by varying the threshold.  



6 

Figure 5 shows the estimates of pre-yielding stiffness and post-yielding stiffness with different 

threshold. For variable thresholds, the pre-yielding stiffness is robust because the elastic parts for all 

the sub-half cycles are big enough to obtain good estimates. The post-yielding stiffness is not robust 

because of the influence of small cycles when the threshold is low. 

 

Figure 5. Estimates results of stiffness 

Figure 6 and Figure 7 show the estimates of yield displacement and energy dissipation coefficient, 

respectively. The results are robust with varying thresholds because the turning points used to compute 

the estimates of dy and β are not affected by small cycles. 

 

Figure 6. Estimates results of yield displacement 

 

Figure 7. Estimates results of energy dissipation coefficient β 

Figure 8 shows the estimates of total absorbed energy. The total energy dissipation dropped as more 

cycles are ignored with the rising threshold.  
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Figure 8. Estimates results of total absorbed energy 

As a result, a threshold of 0.04 is chosen to evaluate the results of a 20 suite earthquake records with 

10% RMS noise, as shown in Table 1. A ‘-’ is presented where the structure is identified as remaining 

linear during the entire earthquake. 

Table 1. Results for 20 different earthquake events. 

Earthquake 

Record 

Pre-yielding 

stiffness 

(kN/mm) 

Post-yielding 

stiffness 

(kN/mm) 

Yield 

displacement 

(mm) 

Energy 

dissipation 

coefficient 

True 157.9 23.7 24.9 0.500 

EQ1 157.4 - - - 

EQ2 157.0 24.2 25.3 0.508 

EQ3 157.7 - - - 

EQ4 157.1 23.6 25.4 0.503 

EQ5 157.8 23.5 23.8 0.495 

EQ6 157.8 - - - 

EQ7 158.7 23.4 24.7 0.496 

EQ8 158.8 24.2 24.7 0.500 

EQ9 158.6 - - - 

EQ10 157.7 - - - 

EQ11 158.2 23.9 24.7 0.478 

EQ12 157.9 - - - 

EQ13 157.5 23.9 24.6 0.498 

EQ14 157.9 - - - 

EQ15 157.8 23.8 24.4 0.498 

EQ16 158.1 24.0 24.9 0.479 

EQ17 157.7 - - - 

EQ18 157.2 23.7 24.6 0.492 

EQ19 157.6 - - - 

EQ20 157.9 23.7 23.3 0.527 

It can be seen from Table 1 that the mean estimates of ke, kp, dy and β matched well with true input 

parameters for identified nonlinear events. And the estimates of ke for identified linear events give a 

good results as well. 
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5 CONCLUSIONS 

This research develops a simple method for the damage identification of a highly nonlinear flag-

shaped hysteretic structure. A simulated system is used to demonstrate the feasibility of the method. 

The results show that a high threshold can give a good estimates of the physical parameters of the 

system, and a good estimates of absorbed energy of the system can be obtained with a low threshold. 

The method is robust to measurement noise even at level of 10%. In addition, good results are 

obtained for 20 different earthquake events. Overall, the method is computationally simple and can be 

implemented automatically. Thus, a rapid assessment can be made to offer a significant information of 

structure damage or safety after an event. 

REFERENCES 

Bartera, F. & Giacchetti, R. 2004. Steel dissipating braces for upgrading existing building frames. Journal of 
Constructional Steel Research. 60(3): 751-769. 

Chase, J. G., Leo Hwang, K., Barroso, L. & Mander, J. 2005a. A simple LMS‐based approach to the structural 
health monitoring benchmark problem. Earthquake engineering & structural dynamics. 34(6): 575-594. 

Chase, J. G., Spieth, H. A., Blome, C. F. & Mander, J. 2005b. LMS‐based structural health monitoring of a non
‐linear rocking structure. Earthquake engineering & structural dynamics. 34(8): 909-930. 

Christopoulos, C., Filiatrault, A. & Folz, B. 2002a. Seismic response of self‐centring hysteretic SDOF systems. 
Earthquake engineering & structural dynamics. 31(5): 1131-1150. 

Christopoulos, C., Filiatrault, A., Uang, C.-M. & Folz, B. 2002b. Posttensioned energy dissipating connections 
for moment-resisting steel frames. Journal of Structural Engineering. 128(9): 1111-1120. 

Doebling, S. W., Farrar, C. R., Prime, M. B. & Shevitz, D. W. 1996. Damage identification and health 
monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature 
review.  

Dolce, M., Cardone, D. & Ponzo, F. C. 2007. Shaking‐table tests on reinforced concrete frames with different 
isolation systems. Earthquake engineering & structural dynamics. 36(5): 573-596. 

Farrar, C. R., Baker, W., Bell, T., Cone, K., Darling, T., Duffey, T., Eklund, A. & Migliori, A. 1994. Dynamic 
characterization and damage detection in the I-40 bridge over the Rio Grande.  

Feder, P. I. 1975. The log likelihood ratio in segmented regression. The Annals of Statistics. 3(1): 84-97. 

Hann, C. E., Singh-Levett, I., Deam, B. L., Mander, J. B. & Chase, J. G. 2009. Real-time system identification of 
a nonlinear four-story steel frame structure—application to structural health monitoring. Sensors Journal, 
IEEE. 9(11): 1339-1346. 

Hudson, D. J. 1966. Fitting segmented curves whose join points have to be estimated. Journal of the American 
Statistical Association. 61(316): 1097-1129. 

Loh, C.-H., Lin, C.-Y. & Huang, C.-C. 2000. Time domain identification of frames under earthquake loadings. 
Journal of Engineering Mechanics. 126(7): 693-703. 

Lus, H., Betti, R., Yu, J. & De Angelis, M. 2003. Investigation of a system identification methodology in the 
context of the ASCE benchmark problem. Journal of engineering mechanics. 130(1): 71-84. 

Nayyerloo, M., Chase, J., MacRae, G. & Chen, X. 2011. LMS-based approach to structural health monitoring of 
nonlinear hysteretic structures. Structural Health Monitoring. 10(4): 429-444. 

Ozbulut, O. E. & Hurlebaus, S. 2011. Seismic assessment of bridge structures isolated by a shape memory 
alloy/rubber-based isolation system. Smart Materials and Structures. 20(1): 015003. 

Rodgers, G. W., Solberg, K. M., Chase, J. G., Mander, J. B., Bradley, B. A., Dhakal, R. P. & Li, L. 2008. 
Performance of a damage‐protected beam–column subassembly utilizing external HF2V energy dissipation 
devices. Earthquake engineering & structural dynamics. 37(13): 1549-1564. 

Sato, T. & Qi, K. 1998. Adaptive H∞ filter: its application to structural identification. Journal of Engineering 
Mechanics. 124(11): 1233-1240. 

Tremblay, R., Lacerte, M. & Christopoulos, C. 2008. Seismic response of multistory buildings with self-
centering energy dissipative steel braces. Journal of Structural Engineering. 134(1): 108-120.           

 


