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ABSTRACT The effectiveness of control strategies in achieving the objectives of a 
performance based design is well accepted in the earthquake engineering community. 
Consequently, various methods have been proposed for the optimal design of dampers 
and their distribution along the height of a building. These methods usually assume a 
Rayleigh damping matrix to model the in-structure (inherent) damping. In this paper we 
attempt to investigate the effect of in-structure damping modeling on the performance of 
optimal designs attained by different methods. The performance of each method is 
measured in accordance with the optimization problem used for its design. For this 
purpose the present study focuses on optimally designing the damper distribution using 
the following design methods - the simplified sequential search algorithm (SSSA), 
Takewaki’s method based on minimizing drift transfer function, and the analysis/redesign 
approach. The different in-structure damping models used for the study are classical 
Rayleigh damping and Russell’s elemental damping model. Uniform distribution of 
dampers is also used in this study as it is the most popular and common way of damper 
distribution prevailing in the industry. The quantity of added damping is assumed to be 
sufficient not to induce any inelastic excursions in the parent frame. The effect of the in-
structure damping model in a controlled frame is found to be a function of the amount of 
added damping.  

1 INTRODUCTION 

Conventional capacity design strategy relies on the “evasion” of seismic forces by enduring inelastic 
deformations. This philosophy could also be observed as “dissipation with damage” as seismic energy 
is dissipated by inelastic deformation. Due to the reliance of this philosophy on inelastic deformations, 
it incurs heavy damages to the parent structure making it non-functional after a major seismic event. 
So in order to reduce damage, from a dynamic perspective, a more rational approach would be to rely 
on “dissipation without damage” rather than “evasion/dissipation” of seismic forces by damage. One 
way to achieve this is by increasing the amount of damping in the system by adding dissipation 
dampers. So the resultant net damping in the system would be a combination of the inherent in-
structure damping in the system (mainly due to the material or structural damping) and damping due to 
added dampers. This net damping would be responsible for the reduction of unwanted response during 
a seismic event. 

Earlier studies have shown that in order to achieve a reliable performance, an optimal distribution of 
added damping devices is required (Takewaki 1997, Takewaki 2009, Garcia 2001, Levy and Lavan 
2006). Previous studies have also highlighted the fact that in the case of bare frames an erroneous in-
structure damping model can have a disastrous effect on the overall response prediction of the system 
especially when the parent frame becomes nonlinear (Val and Segal 2005). The optimal distribution 
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process of the added devices also depends on the inherent in-structure damping in the system as the 
net response reduction is a function of the net damping. In analytical terms this means, there can be a 
possibility that if the in-structure damping model fails to capture the realistic damping in the system, 
then what seems optimal in analysis might not be optimal in reality. Now the main question to be 
answered is how much effect the difference in choice of in-structure damping models would have on 
the optimal response of the controlled frame? Focusing on the uncertainty prevalent in the choice of 
the in-structure damping model, this paper mainly illustrates the effect of different choices of in-
structure damping models on the optimal response of the controlled frame. The present study 
illustrates the sensitivity of both classical Rayleigh damping model and the advanced Russell’s spatial 
hysteresis model on the performance of the controlled linear frames. Three optimisation schemes, the 
simplified sequential search algorithm (SSSA) (Garcia 2001), Takewaki’s method based on 
minimizing drift transfer function (Takewaki 1997), and the analysis/redesign approach (Levy and 
Lavan 2006)as well as a uniform distribution of dampers is used to design the control frame. 
Comparative simulation studies using the two in-structure damping models described above are 
presented. Also a comparative study is presented on the uncontrolled frame to illustrate the effect of 
the in-structure damping model on the overall response. 

2 BRIEF OVERVIEW OF THE MODELS OF DAMPING USED IN THE PRESENT STUDY 

This section gives a brief overview of classical and non-classical elemental spatial hysteresis damping 
models which are used in the numerical studies presented in this paper. To get a detailed review on all 
other models of damping interested readers should refer to Banks and Inman (1991), Adhikari (2000), 
Puthanpurayil et al (2011), Smyrou et al (2011). Banks and Inman (1991) deals with damping mainly 
in continuous system whereas the other papers deal with damping in discrete systems. A full state of 
the art description on damping is given in DeSilva (2007). 

2.1 Classical viscous damping  

Viscous damping is mainly achieved by the incorporation of Rayleigh’s dissipation function given as                          
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where ‘C’ represents a non-negative definite symmetric matrix. Rayleigh further demonstrated that 
one way of obtaining the ‘C’ matrix is by a linear combination of the mass and stiffness matrices, 
which is given as, 

KMC βα +=                               (2) 

whereα  and β  are calculated as functions of frequency using a preconceived damping ratio. 

This model is commonly used to model damping in MDOF (Multi-Degree of Freedom) systems in 
practice and its popularity is mainly due to the fact that it uses the already computed mass and stiffness 
matrices and demands only the calculation of the constants α and β  (Carr 2007).  

2.2 Elemental spatial hysteresis model 

Elemental spatial hysteresis model was first proposed by Russell (1991). The Russell model 
incorporated Euler beam formulation is given as 

04 =−+++ )t,x(fEIwQQwA eiρ                      (3) 

Over here the internal damping term is given as (Russell 1991), 
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and the external damping term is  (Banks and Inman 1992) 



3 

t

)t,x(w
Qe ∂

∂= γ                               (5) 

The boundary terms assuming a cantilever beam is given as, 

0),0( =tw ,          (Dirichlet's condition)                (6) 

0),0( =twx         (Neumann Condition)                (7) 
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'w'  respresents the spatio-temporal variation of deflection. The internal damping term is described as 
a torque acting on the beam at point '' x due to the differential rotation of the beam at points ξ "near" x 

(Russell 1991). The ),( ξxh  is called the interaction kernel and is a function of both '' x  and ''ξ . The 

kernel function ),( ξxh  in eq. (4) can take any mathematical causal model. For the present study in 

the following numerical sections ),( ξxh adopts the Gaussian error function given as follows 
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Over here ‘a’ and ‘b’ are damping coefficient constants.  
For developing the in-structure damping matrix in the present study, classical Galerkin implementa-
tion is used and Hermitian shape functions are used for interpolation.  

2 METHODS CHOSEN FOR THE STUDY 

 Four methods are chosen for the present study. A very brief overview of all the methods are given in 
the following subsections. Interested readers should refer to the relevant papers for a detail under-
standing of the optimization methods. 

2.1.1 Uniform Distribution 
The total added damping C is added uniformly to all the storeys. This can be mathematically ex-
pressed as, 

n
Cci =  ,                        (11) 

where ‘n’ is the number of storeys and i=1……n and ci is the damping coefficient per storey. 

2.1.2 Takewaki’s method 
The aim of Takewaki’s method (1997, 2009) is to minimize the sum of the amplitudes of the transfer 

function of inter-storey drifts evaluated at the undamped fundamental natural circular frequency 1ω  

subjected to a constraint on total damping coefficients. Since the method fully relies on the structures 
dynamic behavior it is independent of the ground motion. 

2.1.3 The analysis/redesign method 
For linear scenario discussed in this paper, the analysis/redesign method (Levy and Lavan, 2006) se-
lects an active ground motion based on its maximum spectral displacement characteristics. Once the 
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active ground motion is selected a response analysis is performed and the objective function which is 

the damping vector and the performance index ip is computed. The  expression for ip is given as, 
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where peak
iδ  is the peak interstorey drift and allowableδ is the allowable interstorey drift. A fully stressed 

design is achieved when ip  tends to unity. If the target performance index of unity is not achieved 

then the damping coefficients are updated using a recurrence relationship given as, 
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where ‘q’ is 0.5 for linear analysis.                 

2.1.4 Simplified Sequential search algorithm 
This is a simple iterative approach which seeks to optimize the damper placement procedure by se-
quentially placing the devices in locations where they can generate the maximum force. This method 
was proposed by Garcia (2001) as a simplification for the classical method of Sequential search algo-

rithm proposed by Zhang and Soong (1992). The total added 
damping is divided into equally sized discrete devices and the 
devices are sequentially placed governed by an optimal location 
index given as 

iil δαδαγ 
21 +=            (14) 

where lγ  is the location index and iδ and iδ are interstorey drift 

and interstorey velocity. For pure linear viscous dampers 01 =α  

and 12 =α . The bare frame is subjected to a time history 

analysis and lγ  is computed for each storeys. The first device is 

placed with the highest lγ  value. The process is repeated for the 

second device and on until all devices are placed. 

3 NUMERICAL STUDY 

This section presents a numerical study performed to assess the 
sensitivity of the choice of in-structure damping models on the 
optimal response of the linear control frame. A two bay seven 
storey reinforced concrete frame as shown in fig.1 is used for the 
present study with a constant storey height of 3m and bay width  

of 5m. The geometric dimensions of the frame members used are  

Figure 1. 2D frame used for the study 

given in table.1. The beam geometric dimensions of the frame members presented in table 1 is an 
equivalent geometric property derived considering the effect of slab and beam together to correctly 
represent the lumped mass. In this study beams and columns are modelled by using elastic 2D Euler 
beam elements with 3 degrees of freedom per node. The Young’s modulus is adopted as per NZS 3101 
with MPaf '

c 30=  . The Young’s modulus adopted is reduced to 80% of the value to reflect the 

concrete cracking due to durability considerations. A density of 
32300

m
kg  is used for the present 

study. 
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Table 1 Geometric dimensions of the frame members 

Structural Element Width (B) in mms Depth (D) in mms 

Column (C1) 600 600 

Beam (B1) 1300 400 

 

3.1 Uncontrolled frame 

Table 2 gives the first seven periods of the structure used for the study and fig.2a presents the first 
three undamped mode shapes for illustration purpose. Figs.2b and 2c compares the peak interstorey 
drifts computed using classical Rayleigh damping with %5=ξ  , %2=ξ  and elemental damping 

models with appropriate parameters (a, b and γ ) corresponding to %5=ξ  and %2=ξ . The 
appropriate parameters of the elemental damping models are identified by matching the roof top 
displacement obtained by the free vibration of the seven storey frame.  The identified parameters are 
given in table 3. A 5% damping ratio is adopted solely based on the most common practice prevalent 
in the industry whereas a 2% damping ratio is assumed as it is an intuitive accepted norm that the in-
structure damping in controlled frames can be considerably less as compared to the uncontrolled frame 
due lesser deformation of the frame. Figs.2b and 2c illustrates the response of both elemental damping 
model and Rayleigh damping model. In the case of Rayleigh damping with %5=ξ  a difference of 

approximately about ~11%is obtained in the peak drift whereas in Rayleigh damping with %2=ξ  a 
difference of about only ~0.8 % is obtained in the peak responses.  

Table 2. Period Summary 
Mode 

number 
Period 
(Sec) 

1 0.75 
2 0.23 
3 0.12 
4 0.07 
5 0.05 
6 0.049 
7 0.04 

 

Table 3. Parameters of elemental damping 
model 

 %5=ξ  %2=ξ  

a 0.5 0.2 

b 
elementL  elementL  

γ  0.248 0.102 

 

Figure 2. a) Mode shapes 2b) peak inter-storey 
drifts of uncontrolled frame with both 5% 
Rayleigh damping and Elemental damping model 
2c) peak inter-storey drifts of uncontrolled frame 
with both 2% Rayleigh damping and Elemental 
damping model 
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3.2 Controlled Frame 

Following strategy is adopted for assessing the sensitivity of the choice of in-structure damping 
models on the optimal response of the controlled frame. First the optimal damper distribution and total 
added damping for the control frame is computed using the analysis/redesign method. The total added 
damping thus obtained is then distributed using all the other methods with in-structure damping model 
represented by classical Rayleigh damping. The optimally controlled frame thus obtained from all the 
four methods is then subjected to a time history analysis with elemental model with appropriate 
parameters (refer table 3) representing the in-structure damping and the peak drift responses are 
compared.  

3.2.1 Analysis /Redesign Method (Levy and Lavan,2006) 

Spectral displacements curves are generated for ensemble of ground motions using a single degree of 
freedom structure with the same fundamental frequency as the structure under consideration. 
Maximum spectral displacement is obtained for Loma-Prieta earthquake. So the optimisation is done 
for the Loma-Prieta ground motion. The 

allowableδ in eq.(12) is taken as 0.01m. Figs. 3a and 3b represent 

the optimal damping obtained and the corresponding ip values. 

 

 

Figure 3. a) Optimal damping of the control frame; 3b) The storey level performance index 

 

Figure 4. a) Sensitivity of the peak interstory drift with %2=ξ .4b) Sensitivity of the peak interstory drift 

with %5=ξ . 

The total quantity of added damping obtained using Rayleigh damping with %2=ξ  is 

m
skNC −= 158124  and with %5=ξ is

m
skNC −=156738 . Figs.4a and 4b represents the comparative 

plot of the peak interstorey drifts obtained by the classical Rayleigh model and the elemental damping 
model for Loma Prieta earthquake. In the case of Rayleigh damping with %2=ξ , the difference 
between both the models is negligible whereas a maximum of 2% discrepancy in peak drifts is 
obtained for Rayleigh damping with %5=ξ . This observation indicates the fact that the effect of the 
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in-structure damping model in a controlled frame is a function of the amount of added damping.  

3.2.2 Uniform distribution 

The above obtained total damping C is uniformly distributed per storey as per eq.(11). and the 
controlled frame is reanalyzed using both Rayleigh damping and elemental damping models. 

  

 

Figure 5. a) Sensitivity of the peak interstory drift with %2=ξ .5b) Sensitivity of the peak interstory drift 

with %5=ξ . 

Figs.5a and 5b clearly outlines the fact that in the case of uniform distribution no significant effect of 
different choice of in-structure damping model is observed.  

3.2.3 Takewaki method (1997) 

  Fig.6a depicts the optimal damping distribution obtained by Takewaki’s method with constraint on 
the damping material given by the total added damping C. Fig.6b depicts the sensitivity of the peak 
drift response to the choice of different in-structure damping models using Loma Prieta earthquake. 
Only Rayleigh damping with %2=ξ  is presented in fig. 6b. Though not presented here same trend is 

exhibited by model with Rayleigh damping with %5=ξ . 

 

Figure 6. a) Optimal damping of the control frame 6b). Sensitivity of the peak interstory drift to different 
choice of in-structure damping models 

In contrast to the uncontrolled frame, no significant discrepancy in the response is observed as a 
choice of different damping models. 

3.2.4 Simplified Sequential Search Method (Garcia, 2001) 

The total damping C obtained with %2=ξ  is optimally distributed using SSSA method. 
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Figure 7. a) Optimal damping of the control frame 7b). Sensitivity of the peak interstory drift to different 
choice of in-structure damping models 

Fig.7a represents the optimal damping distribution and fig.7b depicts the sensitivity of the peak drift 
response to the choice of different damping models using Loma Prieta earthquake. The discrepancies 
observed is negligible signifying the fact that with more added damping, the effect of in-structure 
damping remains negligible for linear parent frames. 

4 CONCLUSION 

Sensitivity of the choice of in-structure damping model on the optimal response of control frame is 
investigated. Russell’s elemental spatial hysteresis model and classical Rayleigh damping model are 
compared in the study. Discrepancies are observed in the response of the uncontrolled frame 
signifying the fact that a correct representation of the in-structure damping model is imperative in the 
bare frame analysis. In the case of optimally added damping, the in-structure damping sensitivity in 
linear scenario is found to be very low. Though not presented here, the above study indicates that the 
sensitivity increases when the amount of added damping decreases.  
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