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ABSTRACT: One of the major positive outcomes from the Christchurch earthquakes has 
been the rise in popularity of low damage structures. The design of such structures aims 
to limit damage to the structural components so the buildings can be immediately 
occupied following a significant earthquake without the need for major repairs or possible 
demolition. Instead of the earthquake energy being dissipated by the development of 
plastic hinge zones in the structural members, the non-linear behaviour is concentrated in 
replaceable energy dissipators. Such dissipators must be simple to design, cheap to 
fabricate, flexible in application, robust and replaceable. The U-shape flexural plate 
(UFP) dissipator is a simple solution that meets all of these requirements. Consequently, 
its use in low-damage-design structures has been increasing rapidly. However, limited 
information was available regarding some of the design characteristics of UFPs, 
notability the initial and post-yield stiffness. These parameters are critical in seismic 
application in order to determine the dissipative capacity as well as the maximum 
possible force developed by such a device. A parametric study of the UFP device has 
been undertaken using a combination of experimental testing and finite element analyses. 
Based on the data collected, equations which predict the force-displacement behaviour of 
the dissipator are presented along with preliminary guidelines for their design. 

1 INTRODUCTION 

The U-shape flexural plate (UFP) is a form of flexural dissipator initially proposed by Kelly et al. 
(1972) as a means of providing energy dissipation between structural walls. It has had a recent rise in 
popularity due to its successful application in coupled shear walls, particularly rocking PRESSS 
(Priestley et al., 1996) or PRES-LAM (Palermo et al., 2005) walls which have also had a recent rise in 
popularity. UFPs are also cheap to fabricate and exhibit large stable hysteretic behaviour. Although 
simple design equations have been developed for calculating the yield force of UFPs, the maximum 
force of a UFP device exceeds the yield force due to strain hardening of the steel. Tests by other 
researchers have shown that stresses are typically in the order of 145 – 215% that of the yield stress 
obtained from direct tension tests. (Iqbal et al., 2007; Kelly et al., 1972; Pampanin, 2010). Accurately 
quantifying this maximum force is critical in order to ensure capacity design principles are upheld and 
that low-damage hybrid systems will re-centre as intended. Calculation of the initial stiffness is also 
critical in order to ensure the device will activate during the expected earthquake displacements. If the 
UFP does not fully activate during an earthquake due to failure to ensure adequate stiffness, the 
coupled wall system will have a lower moment resistance than intended and consequently higher drifts 
and more damage will be likely in the structure. 

This paper aims to assist in the design of UFPs by presenting design equations based on a parametric 
study. This parametric study uses a combination of experimental testing and finite element analyses to 
verify analytically derived design formulae. The non-linear force-displacement behaviour of UFPs is 
proposed based on the Ramberg-Osgood (Ramberg & Osgood, 1943) function. 

2 BACKGROUND 

U-Shaped flexural plates (UFPs) are formed from bending a mild steel plate section around a fixed 
radius to form a ‘U’ shape, as shown in Figure 1. This bending is performed when the plates are hot in 



order to 
subjected
and wor
and vice

Figure 1.
(Pampan
(Iqbal et 

UFPs ca
thicknes
design c
by cons
dissipati
shown in

3  UFP

The forc
shear of 
Equation
theoretic

 

 

 

The abov
than the 

The max
deforma
curved s
transition

prevent stre
d to a displa

rk is done at 
e versa. Thus

. Practical bu
nin et al., 201

al., 2007) an

an be designe
s, width and
an also be m
idering low-
on applicati
n Figure 1. 

P DESIGN 

ce provided b
f the UFP to 
n 1 and is d
cal maximum

ve equations
plastic sectio

Figure 2. Co

ximum strai
ation of the p
section is fix
n. Consideri

ss concentra
acement relat

the two poi
 the yielding

 
uilding applic
1) and the Ne
d general UF

ed for a large
d radius. Sin

made such tha
-cycle fatigu
ons, more re

by a UFP wa
the plastic m

defined when
m force of a U

ypM σ=

u

p
p D

M
F

2
=

s can also be 
on modulus, 

oupling shear

in in a UFP
plate will be 
xed, it is po
ing a small r

ations being p
tive to the op
ints where th
g point of the

cation of UFP
elson-Marlbo

FP arrangeme

e range of po
nce the maxi
at the UFP ca
ue criteria. U
ecently as a

as derived an
moment, as s
n the entire r
UFP can ther

4
y

UFPy

b
Z

σ
=

u

uuyp

D
tb

2

2σ
=  

derived for t
Z. For a rect

 
r of UFP (left

P can be det
in going from
ssible to der
region of the

2 

present in th
pposite side, 
he radius of 
e plate is mov

Ps in the Sout
orough Institu
ent (right)

ossible displa
imum strain 
an undergo d
UFPs have 
a device betw

nalytically b
shown in Fig
region of a 
refore be det

4

2
uutb

  

the yield for
tangular sect

t) and derivat

termined ana
m straight to
rive the stra
e straight sec

he final U sha
the semi-cir
curvature is

ved back and

thern Cross H
ute of Techno

acements and
is also dire

deformations
successfully
ween couple

by Kelly et al
gure 2. The p
rectangular 
ermined, as 

rce using the 
tion, the yiel

tion of mome

alytically by
o curved or v
ain that occu
ction of the 

ape. When o
rcular section

changed fro
d forth along 

Hospital, Chr
ology Buildin

d force levels
ectly related 
s from multip

been used 
ed timber sh

l. (1972) by 
plastic mome
section has 
shown by Eq

elastic sectio
ld force is 2/3

ent in terms o

y considering
vice-versa. S
urs in the pla
UFP, as illu

one side of th
n rolls along 
om straight t

g the plate. 

ristchurch (le
ng, Nelson (ce

s by varying
to the geom

ple earthquak
in several s

hear walls, li

relating the 
ent can be de
surpassed y

quation 2. 

(1) 

(2) 

on modulus,
3 the plastic 

of theta (right

g that the m
Since the radi
ate from ma

ustrated by th

he UFP is 
the plate 

to curved 

eft)  
entre) 

g the plate 
metry, the 
ke events 
structural 
ike those 

coupling 
efined by 

yield. The 

 S, rather 
force. 

t) 

maximum 
ius of the 

aking this 
he square 



3 

region in blue in Figure 2 (right), it can be seen that when going from the straight to curved section of 
the plate, the blue region must deform. Around the outside edge of the UFP the plate must extend by 
Δy, indicated by the light blue region, and around the inside edge, the plate must compress by Δy, 
indicated by the dark blue region. Making use of geometry, the maximum strain is therefore equal to 
the thickness divided by two times the radius, as given by Equation 3. 
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u
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The yield displacement of a UFP to be determined analytically using energy methods, otherwise 
known as Castigliano’s Second Theorem (Castigliano, 1879). This method finds the deflection from 
the partial derivative of the strain energy determined by the loads applied. For the UFP we are only 
considering bending loads since there is no torsional component and the axial deformation will be 
negligible. The general equation for Castigliano’s Theorem is given by Equation 4. 
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The strain energy due to bending is found by taking the integral of the moment squared as given in 
Equation 5. 
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The moment due to bending is defined in terms of theta (as shown by Figure 2) by Equation 6. 

 uyuy rFrFM +−= )cos1()( θθ  (6) 

Solving this gives the yield displacement: 

 
[ ]

3

32

0 16

27

2

)cos1(

uu

uy
u

uyuy
L

y tEb
DF

r
EI

rFrF
F

π
θ

θ
=∂

+−
∂
∂=Δ   (7) 

The initial stiffness can thus be defined as: 
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4 EXPERIMENTAL TESTING 

In order to characterise the behaviour of the UFPs connections, a series of tests were performed using 
an Instron Materials Testing Machine. A displacement controlled loading protocol was used to 
undertake the quasi-static, cyclic loading. The quasi-static loading regime consisted of three cycles at 
each displacement level, with the maximum displacement being 82.5 mm. The loading rate was varied 
between 0.5 mm/sec up to 5 mm/sec according to the magnitude of the displacement cycle. The 
procedure defining the loading protocol was adopted from the ACI recommendations (ACI ITG-5.1, 
2007).  

4.1 UFP Specimen 

One size of UFP was fabricated for testing. Certain aspects of the possible UFP geometry were 
constrained by the possible materials and machinery available; the plate thickness and width was 
restricted to the standard metric sizes available; the bend diameter was restricted by the roller sizes 
available to the fabricator. A local Christchurch company, Bellamy and East Spring Makers, was used 
to fabricate the UFPs. The largest bend diameter they could provide had an inner diameter of 120 mm. 
A small ratio between plate thickness and diameter was desired in order to minimise strains and 
accommodate large displacements. In order to obtain the design force of approximately 10 kN, a plate 
size of 120 x 8 mm was selected. This gave a yield force of 6.4 kN and a plastic force of 9.6 kN as 
given by Equation 3. Note the nominal yield strength of an 8 mm plate is 320 MPa (AS/NZS 3678, 
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under-predicted. This is due to the cyclic response relying upon repetitive reverse cycling in order to 
develop the larger forces attributed to cyclic hardening. It was decided to use the monotonic response 
for defining the non-linear behaviour since this was deemed the most appropriate for not over-
estimating expected forces or underestimating expected displacements. 

 The non-linear behaviour is approximated with the non-linear Ramberg-Osgood hysteretic rule 
(Ramberg & Osgood, 1943). The Ramberg-Osgood hysteresis is suited for representing steel 
behaviour since it shows a smooth elastic-plastic transition. For the Ramberg-Osgood function, the 
larger the R factor value, the closer the post-yielding behaviour is to being perfectly plastic (Kaldjian 
& Fan, 1967). 

A Ramberg-Osgood function is fitted to the monotonic FEA using a MATLAB regression function 
that estimates the function coefficients using an iterative least squares estimation (MathWorks Inc., 
2011). The initial stiffness can be extracted directly from the numerical data, leaving only the yield 
force and R factor to require fitting. Figure 5 (right) shows the Ramberg-Osgood function that has 
been fitted to the numerical data of the monotonic UFP analysis. It can be seen that the Ramberg-
Osgood function is an excellent representation of the behaviour. It should be noted that the effective 
yield point of the Ramberg-Osgood function does not match where a change in stiffness occurs.  

6.2 Parametric Analyses 

The plate thickness of the UFPs was varied based on commercially available metric sizes (5, 6, 8, 10 
and 12 mm thick plates). A standard plate width of 100 mm was used. Equation 3 demonstrates that 
the plate width has a linear relationship with the force in the plate and therefore the results are 
effectively all per 100 mm of plate width. The inner diameter, Di, of the UFP was varied from 60 mm 
to 120 mm in 20 mm increments. The nominal diameter, Du, is equal to the inside diameter, Di, plus 
the plate thickness, tu. In total, 20 numerical analyses were performed. 

The yield force and yield displacement are presented in Figure 6 for the 20 numerical analyses along 
with the analytical solutions. The results are presented for the various plate sizes and diameters.  

Figure 6. Analytical, numerical and experimental comparison of yield force and yield displacement 

The different colours correspond to the five plate sizes considered, with the diameter of the UFP being 
plotted along the x-axis. The experimental data point has been linearly adjusted to represent a UFP 
with a plate width of 100 mm instead of 120 mm. The analytical solutions are based on the plastic 
force, given by Equation 3 and the numerical yield force is defined using the effective yield point as 
defined by the Ramberg-Osgood function. It can be seen that the analytical plastic force matches the 
effective yield point of the Ramberg-Osgood function very well. 

The analytical solution for the initial stiffness has been found using Equation 8 and is presented in 
Figure 7 (left) along with the 20 FEM analyses and experimental data point. For simplicity, the data 
has been presented in non-dimensionalised form. The plate thickness, tu, has been non-dimensionalised 



8 

by the bend diameter, Du. This dimensionless value is referred to as the ‘geometric ratio’. It can be 
seen that when presented against the geometric ratio, the stiffness data points follow a single curve. 
The analytical function fits the numerical data points and the single experimental data point extremely 
well. 

An empirical relationship to define the R factor has been proposed that also makes use of the 
geometric ratio of the UFP. Shown in Figure 7 (right) are the R factors of the numerical analyses 
plotted against their corresponding geometric ratio. It can be seen that the R factor shows a trend of 
being larger for greater geometric ratios. This trend appears to flatten out for greater geometric ratios, 
suggesting a logarithmic function would be a good fit to approximate the data. A logarithmic function 
is fitted to the data using an iterative approach to minimise the squares of the difference between the 
function and data points and is shown in Figure 7 (right). 

Figure 7. Analytical, numerical and experimental comparison of initial stiffness (left) and non-linear r 
gression of R factor (right) 

The fitted logarithmic function is given by Equation 9. As far as we know, this relationship only 
relates to the geometries considered here. Also shown in Figure 7 (right) by grey lines are suggested 
upper and lower bounds for the R factor. These represent a change in the constant presented in 
Equation 9 from 29.5 to 31.5 and 27.5, respectively. 
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Since the R factor is critical in determining the peak force and peak displacement of the UFP, a 
thorough design of a UFP may require the use of an upper and lower bound R factor. In this way the 
maximum probable force provided by the UFP can be established by use of the lower bound R factor. 
Likewise, the minimum probable force and hence the maximum probable displacement is obtained by 
use of the upper bound R factor. 

6.3 Summary of Recommended Modelling Parameters 

Using the combination of experimental, analytical and numerical results, the yield force, initial 
stiffness and Ramberg-Osgood R factor required for modelling UFP connections are given in 
Equations 3, 8 and 9 respectively. 
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 where 
 ub  = Width of UFP plate section 

 ut  = Thickness of UFP plate section 

 uD  = Diameter of UFP bend 

 yσ  = Yield stress of UFP 
 E  = Elastic modulus 

7 CONCLUSIONS 

Formulae for modelling the force-displacement behaviour of UFPs has been derived based on an 
analytical, numerical and experimental investigation. The analytical formulae, based on fundamental 
engineering principles, including Castigliano’s Theorem, showed a high level of accuracy with the 
observed experimental and finite element (numerical) results. The post-yield behaviour was found to 
be well represented by the Ramberg-Osgood function. Using non-linear regression, R-factor values 
were determined and a function to define the R-factor proposed. Due to scatter of the R-factor values, 
a lower and upper bound function were also suggested to help ensure a suitable design. Using these 
tools it is believed a suitably accurate representation of the UFP device can be obtained for use in 
seismic applications.  
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