
Paper Number P23 

A novel non-linear model for multilayer rubber bearing 
isolators whith load interaction 

 
2014 NZSEE 
Conference 

N.E. Maureira 

Department of Civil Engineering, Universidad Católica de la Santísima 
Concepción, Concepción, Chile. 

PhD. Candidate, Pontificia Universidad Católica de Chile, Santiago, 
Chile. 

ABSTRACT: A novel non-linear mathematical model is proposed to characterize the 

mechanical behaviour of a circular elastomeric rubber isolator. This model considers the 

geometric non-linearities due to large deformations. It represents the coupling between 

the axial and shear loads, with the corresponding vertical and lateral displacements, 

including the loss of axial and lateral stiffness in the isolator generated by excessive 

lateral displacements and compression. This model is also capable of characterizing the 

isolator behaviour under tensile loads and its effect on the lateral stiffness. 

This is an upgrade of an existing model for elastomeric isolators that only characterize the 

relationship between the axial and shear forces, and the corresponding vertical and lateral 

displacements. The proposed model is also able to characterize the internal strain-stress 

state in any rubber sheet. 

From the results of the model proposed, it is conclued that the buckling load is higher 

under tensile loads than under compression, whereas the behaviour of the isolator is non-

simetric with respect the axial load. Furthermore, when considering an axial load 

magnitude lower than 10% of the buckling load in compression, the difference between 

the behaviour of the maximum normal stress and strain as a function of axial load and 

lateral displacement, is substantially different under tension in comparison with 

compression. It is shown by an example that lateral displacements of around ±40% of the 

isolator’s radius and axial tensile loads up to 10% of buckling load are allowed without 

cavitation in the rubber. 

1 INTRODUCTION 

One of the most used techniques in the world for seismic protection of buildings is seismic isolation, 

being the circular multilayer elastomeric isolators the most used device. 

It has been experimentally and theoretically demonstrated, that an elastomeric isolator under axial load 

and lateral displacement has a reduction in its lateral stiffness and it is even posible to become 

unstable. Moreover, the axial and vertical stiffness of an isolator are reduced by the action of lateral 

displacement (Kelly et al., 2003). That situation corresponds to a coupling behaviour between axial 

load and lateral displacement, which is the reason why the overall behaviour is nonlinear. 

The lateral-axial coupling occurs when the isolator is subjected to lateral displacement causing the 

cross section to rotate around a horizontal axis. The maximum rotation occurrs in the middle section of 

the isolator when the top and botton faces of the insolator remain horizontal. When the lateral 

displacement is to the right direction and the axial load is compresion, a rotation is generate in the 

clockwise direction. However, when a tensile axial load is acting, the rotation direction can be reverse. 

The rotation of the cross section causes that both axial and shear global loads have a projection on the 

mid-plane of each rubber sheet (plane located in the middle of the deformed rubber sheet’s thickness). 

In other words, an horizontal and vertical component are generated in the local axis for both loads (see 

Figure 1). Due to the above described phenomenon, the horizontal component of the axial load 

increases the magnitude of local shear load and generates an increment of the lateral displacement. As 

a consequence of these two conditions, the lateral stifness is reduced. Therefore, the local 
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displacement due to shear in each rubber sheet (uVn in Figure 1, whith axis Xn rotated in an angle αn) 

has a vertical component, which is added to the vertical component of the local axial displacement (wn 

in Figure 1, whith axis Zn rotated in an angle αn). As a consequence of this situation, the vertical 

stifness is reduced. The axial stiffness is always reduced when the lateral displacement is increased, 

under compressive or tensile axial loads. Acording Kelly (2003), “the mechanics of the isolator in 

tension are the mirror image of those for the isolator in compression”. 

There are mathematical models that represent the lateral-axial coupling behaviour in a circular 

elastomeric isolator. However, these models characterize only the overall behaviour, which means that 

the model is able to globally predict the relationship between the axial and shear load, and between the 

vertical and horizontal displacement of the isolator, and it is unable to represent the stress-strain effect 

that occurs within each rubber sheet. 

The objective of this research is to propose a nonlinear model that considers the lateral-axial 

interaction between loads and displacemens within a circular multilayer elastomeric isolators. This 

model, in addition to characterizing the overall behaviour of the isolator, is also able to predict the 

internal stress-strain phenomena occurring within any rubber sheets of the isolator. 

2 NON-LINEAR MODEL APPROACH 

2.1 Equilibrium in a single rubber sheet 

The basic hypothesis considered for this model is that rubber is a linear elastic material capable of 

achieving high levels of strain. However, since the thickness of each rubber sheet tr is much smaller 

than its radius R, it can be assumed that the resulting force acting on the plane and the force 

perpendicular to the plane of the rubber sheet have negligible interaction. Therefore, it is necessary to 

know the response of a thin rubber sheet under load in their local axes: perpendicular to the mid-plane 

(Zn) and parallel to the mid-plane (Xn), which is shown graphically in Figure 1. 

 
(a)           (b)            (c) 

Figure 1. Axial load, shear load and bending moment acting individually in a single rubber sheet in its 

local axes, with the corresponding parameters of loads and associated displacements. 

The mathematical relations between decoupled global loads acting on the isolator and the 

corresponding displacements, strains and stress, are well known because they arise from the 

differential equations that rule the rubber behaviour, which has been considered incompressible. 

The load versus displacement mathematical relations and those used to obtain the maximum strain and 

stress in a deformated rubber sheet under uncoupled local loads (see Figure 1), come from the partial 

differential equation that governs the behaviour of this phenomenon. 

The equation for pure local axial load is: 
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The equation that represents pure local shear load is: 
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For the case of pure local bending moment, the equation is: 



3 

    
  

     
   

(3) 

where G is the shear modulus of rubber, A is the cross section area, S is the shape factor, I is the 

second moment of area (inertia) of the cross section and the other variables involved in those 

equations are shown in Figure 1. 

The magnitude of maximum normal stress and strain are given by: 
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The magnitude of maximum absolute shear stress and strain is given by: 
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2.2 Definition of the model 

The model considers that the steel sheets are non-deformable. They have only translation and rotation 

like a rigid body and the deformation is concentrated in the rubber sheets (Figure 2). Each rubber sheet 

provides stiffness associated to local shear “kh” (parallel to the deformed mid-plane of the rubber 

sheet), local axial load stiffness “kv” (perpendicular to the deformed mid-plane of the rubber sheet), 

and bending moment stiffness “kα” on local axis Yn, perpendicular to the shear and axial local axis 

(axis Xn and Zn in Figure 1). 

The behaviour of the isolator system as a whole, is not linear, since the lateral displacement is large. 

This causes the rubber sheets to rotate, making the overall forces acting on the isolator to have 

components on both local axes of each rubber sheet, therefore producing the load interaction. 

 

Figure 2. Multiple spring model (MSM), 3 springs per rubber sheet on isolator, to characterize the 

behaviour of coupled axial and shear loading. Consider that both, top and botton of the isolator can not 

rotate. 
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2.3 Load versus displacement relationship 

The rigid body rotation “αn”, of the mid-plane of the n-th rubber sheet, due to applied loads, imposes a 

kinematic transformation for local displacements uVn, wn, and Δαn in local axes Xn, Zn, which become 

the displacement variations, Δux
n
 and Δwz

n
, between bottom centroid of area of the n-th rubber sheet 

and top centroid of area of steel sheet immediately above the n-th rubber sheet, referred to global axes 

X, Z, which is given by: 
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where αn is the rotation (clockwise positive direction) of the deformed mid-plane of n-th rubber sheet 

with thickness tr, and α n is the rotation of the steel sheet with thickness ts, located above that rubber 

sheet. 

The fundamental hypothesis proposed in this paper, is that the model displacement components of the 

n-th rubber sheet in their local axes, uVn and wn are directly related to local loads, Vn and Pn, and the 

mathematical relation is given by the following decoupled linear equation: 
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(11) 

where the local loads an displacements are shown in Figure 1. 

Local loads are related with global loads by a kinematic transformation, opposite to that represented 

by eq. 11. 
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Adding the accumulated contributions of displacement in each rubber sheet and steel sheet due to 

global loads, and rotating that to the global axes X and Z using eq. 10 combined with eqs. 11 and 12, 

the overall load-displacement equation is obtained: 
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2.4 Solving the Nonlinear System 

The nonlinear system of equations (eq. 13) appears to be indeterminate, because it has the redundant 
variables αn and α n. However, these variables are related to the inner bending moment at the mid-plane 
of each rubber sheet, which is associated with an increase of rotation Δαn (eq. 3). 

Adding the increments of rotation, we have the absolute rotation of the mid-plane of the n-th rubber 
sheet and the rotation of the steel sheet above the n-th rubber sheet, which are: 
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where Δαk is the increase in rotation developed in the k-th rubber sheet, which is related to the internal 

bending moment (eq. 3), evaluated at the level of the mid-plane of that rubber sheet. This bending 

moment “Mk” is given by: 
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Using eqs. 16 and 3, it is possible to calculate the increasing of rotation, Δαn, for n=1 to N (where N is 

the number of rubber sheets), knowing the global loads (Vx and Pz) and an initial approximation of the 

global displacements (ux and wz). Before that, knowing the value of Δαn, it is possible to calculate the 

rotations αn and α n. Then, it is possible to re-estimate the global displacement and re-calculate the 

bending moment Mn, the increasing of rotation Δαn in the n-th rubber sheet, and the total rotations αn 

and α n, for n=1…N. The calculation process is repeated iteratively until achieving convergence. As an 

initial approximation of the global displacements to start the iterative process, the linear relationship 

given by eq. 13 can be considered, assuming αn=α n=0, for n=1 to N. 

3 MODEL RESULTS 

The model was used to obtain the response of a single circular multilayer elastomeric isolator, with 

radius R=30 cm, rubber sheets thickness tr=12 mm, steel sheets thickness ts=3 mm, 40 rubber sheets 

(N), a shape factor S=12.5 and shear modulus of G=7.5 kg/cm
2
 for the rubber. 

All global loads are shown as a proportion of the critical buckling load Pcr, obtained from the model of 

two springs (Kelly, 2003). 

3.1 Load versus displacement curves 

Model results are shown in terms of load versus displacement curves (Figures 3 to 5, left side) and 

stiffness reduction factor curves (Figures 3 to 5, right side). The results obtained using the proposed 

model were compared with those obtained using the two springs model (Koh and Kelly, 1987; Kelly, 

2003; Ryan et al., 2005). 

 

 
(a)                     (b) 

Figure 3. (a) Axial Load versus vertical displacement as a function of lateral displacement (compression 

Pz<0 and traction Pz>0). (b) Vertical stiffness reduction factor as a function of lateral displacement. 
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(a)                     (b) 

Figure 4. (a) Shear load versus lateral displacement as a function of “Pz/Pcr”. (b) Horizontal stiffness 

reduction factor as a function of of “Pz/Pcr” (compression Pz<0 and traction Pz>0). 

 

 
(a)          (b)         (c)          (d) 

Figure 5. (a) Rotation in mid-plane of each rubber sheet, (b) Bending moment, (c) Normalized shear load 

in local axis Xn, (c) Normalized axial load in local axis Zn. It was considered horizontal displacement 

ux=30cm. 

The reduction pattern of vertical stiffness with the increase of lateral displacement is virtually identical 

between the proposed model (secant stiffness) and the two springs model (Figure 3b). Moreover, the 

pattern of reduction in lateral stiffness with the increase of axial load shows no significant differences 

in compression (Figure 4b, left side). In this case, both curves (proposed model and two springs 

model) are close by, and the critical buckling load reached in the proposed model is approximately 5% 

larger than that of the two springs model. However, in tension (Figure 4b, right side), the critical 

buckling load differs from the two springs model in approximately 15 %, and it also shows an 

asymmetry relative to the axial load. 

There is a slight increase of lateral stiffness due to a small tensile load (Figure 4b), which is explained 

because lateral displacement generates a rotation of rubber sheets that is opposite to that generated for 

a tensile load. When the tensile load is not enough to revert the rotation due to lateral displacement, 

the projection of tensile load on the rubber sheets’ local axis Xn is opposite to the global shear 

projected on Xn, therefore, these are subtracted, generating an increase of stiffness. However, when the 

tensile load is large enough to revert the rotation due to lateral displacement, the projection of tensile 

load on rubber sheets’ local axis Xn is added to the projection of the global shear on Xn, which 

generate a reduction of stiffness. 

3.2 Maximun Stress and Strains 

The stress and strain in many points inside rubber, along the entire isolator, were obtained for many 

combinations of axial load and lateral displacement. After analysing all rubber layers, it was 

determined that the maximum stress and strain is always developed in the bottom and top rubber 

sheets. The maximum strain and stress generated in the lower rubber sheet are shown in Figures 6 to 8. 



7 

 

Figure 6. Maximum normal stress, as a function of axial load and lateral displacement. 

 

 

Figure 7. Maximum normal strain, as a function of axial load and lateral displacement. 

 

 

Figure 8. Maximum shear stress and strain, as a function of axial load and lateral displacement. 

The tensile stress of cavitation in the rubber is about three times the shear modulus (Gent, 1990), 

which corresponds to 22.5 kg/cm
2
 for the example shown in Figures 3 to 8. In Figure 6 the contour-

curve associated with this stress corresponds to a plateau that is only reached at a load of about 10% of 

the critical buckling load Pcr (taken from the two springs model (Kelly, 2003)), even in the case of 

large lateral displacements (ux=±R). In contrast, the same stress in compression is reached at a global 
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compressive load of 10% of the Pcr only for |ux|<0.17R; whereas for ux=±R the same stress can be 

reached without requiring axial load. This suggests that it is possible to generate a not insignificant 

level of axial tensile load (10% of the Pcr) in the elastomeric isolator, and not necessarily exceeds the 

cavitation tension. 

The normal strain for which cavitation theoretically occurs in rubber, is given by εc=1/(2S
2
) (Kelly, 

2003), which corresponds to εc=0.0032 for the case shown in Figures 3 to 8. In Figure 7, it is observed 

that even with large lateral displacements (ux=±R), normal tensile strain could be smaller than the 

cavitation, at least in a limited range of axial loads (3% to 5% of Pcr). Also, there is a safe range in 

which no cavitation occurs (|ux|≤0.4R and Pz≤0.1Pcr). 

The above is an advantage that would allow the design of rubber isolators under the action of 

significant levels of axial tensile load (10% of the Pcr), without exceeding the stress and strain of 

rubber cavitation, for a not negligible lateral displacement range, which is |ux|≤0.4R for the example 

shown in this study. This is particularly important in high-rise buildings, where the rocking could 

produce tensile stress in rubber isolators, because the isolators require a large radius due to their large 

weight. Therefore, it is highly probable that the safety range will not be exceeded. 

In many experimental studies of isolators under tensile load required by the US seismic code, when 

uplift on an isolator is predicted by analysis, it was observed that none of the tested isolators failed by 

cavitation (Kelly, 2003). In contradiction to the theoretical calculations that predicts deformation that 

exceeded cavitation conditions. The model introduced in this paper provides analytical evidence that 

suggests the possibility of using elastomeric isolation under to tensile loads in a safe manner. 

4 CONCLUSIONS 

The results of this research suggest the possibility of using elastomeric seismic isolation safely in a 

range of axial load (|ux|≤0.4R and Pz≤0.1Pcr) that is not negligible in comparison with the critical 

buckling load, even with lateral displacement of comparable magnitude to the radius. 

Unlike what is usually considered regarding the behaviour of an elastomeric isolator in tension and 

compression as being the mirror image of each other (Kelly, 2003), this model makes a difference that 

can be substantial, particularly when the axial load is small (Pz<0.2Pcr) which is common in real 

designs (Ryan et al 2005). 

The buckling load is theoretically higher under tensile loads than under compression, whereas the 

behaviour of the isolator is non-simetric with respect the axial load. 
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