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ABSTRACT: Building out-of-straightness result from construction tolerances or post-
earthquake residual deformations.  In addition to peak displacement responses, residual 
displacements may detrimentally affect structure performance in subsequent seismic 
events. Therefore, it is desirable to know how an undamaged building with a specified 
out-of-straightness is likely to behave in an earthquake and how one which is damaged 
and out-of-straight due to an earthquake may perform in an aftershock.  In this research, 
simple models of steel structures with different levels of out-of-straightness are analysed 
using inelastic dynamic time history analysis to quantify effects of out-of-straightness 
under a suite of ground motion records. Structures considered were designed with 
different target inter-storey drifts. 

1 INTRODUCTION 

In the 2010 American Institute of Steel Construction (AISC) Specification for Structural Steel 
Buildings (AISC 2010a), the Direct Analysis Method (DM) is the standard stability analysis and 
design method. Compared to older methods, such as the Effective Length Method (ELM), the DM 
accounts for the critical factors that affect stability of steel buildings in a more transparent manner. 
Accounting for these factors, which include geometric nonlinearity, initial geometric imperfections, 
and inelastic behavior due to residual stresses, allows the effective length factor, K, to be set equal to 1 
in column strength calculations. Research conducted over the course of nearly twenty years (e.g. Liew 
et al. 1994, White and Hajjar 1997 and 2000, Surovek-Maleck and White 2004a and 2004b, White et 
al. 2006) has shown that these two effects can have an appreciable impact on stability behaviour in 
design scenarios that do not contain seismic loading. 

While the DM could potentially be applied to seismic design, the interface between the DM, steel 
seismic provisions and seismic design requirements in Minimum Design Loads for Buildings and 
Other Structures: ASCE/SEI 7-10 (ASCE 2010), is not fully established. The commentary to the 2010 
AISC Seismic Provisions for Structural Steel Buildings (AISC 2010b), states that the DM is not 
intended “to ensure stability under seismic loads where large inelastic deformations are expected.” 
This is because seismic design was not considered in the development process of the DM. Thus, it is 
critical to explore the impact of the key issues that undergird the DM, namely, geometric nonlinearity, 
initial geometric imperfections, and inelastic behaviour due to residual stresses on the seismic 
behaviour of typical steel buildings before the DM is extended to seismic design. 

An even more powerful method of analysing non-seismic steel frames, an extension of the direct 
analysis method has recently been developed. It is termed “Extended Direct Analysis (or EDA)” (Lu, 
2009, [4]). EDA not only considers all the factors in the AISC direct analysis method, but it also 
considers frame plasticity with the dependable member strengths. Moreover, since it considers the 
dependable strength of a structure, the model reasonably realistically represents the real structure. 
However, for seismic design the effects of frame out-of-straightness are not considered. 

Moreover, for structures in seismic regions, methods to evaluate the likely demands on structures have 
generally been developed based on the response of initial perfectly straight structures. Few studies 
have been conducted to systematically evaluate the effect of buildings out-of-straightness on its 
seismic response and the dynamic stability of structures (Masuno et al., 2011; Yeow et al. 2013). 
However, they did not study the effect of different target interstorey drifts in their work and they 
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consider only a constant target interstorey drift of 1.8%. 

Therefore, there is a need to know how an undamaged building with a specified initial out-of-
straightness and how one which is damaged and out-of-straightness due to an earthquake is likely to 
behave in a subsequent event. This study draws motivation from the issues presented above and aims 
to address it by answer to the following question: 

How does target inter-storey drifts design influence the seismic response of structures with different 
levels of out-of-straightness? 

2 RELATED STUDIES  

Sadashiva et al. (2009) conducted studies to evaluate the effect of various types of vertical irregularity 
on structural response during seismic excitations. Studies have been conducted to evaluate the effects 
of vertical mass irregularity, and stiffness-strength configurations for different structures. Two classes 
of the shear-type structure stiffness distribution were designed (i) the Constant Stiffness ratio (CS) and 
(ii) the Constant Inter-storey Drift Ratio (CISDR) as shown in Figure 1. Continuous columns were 
used with the shear-type model to obtain realistic drifts.  

 

 

 

 

 

 

 

 

 

Constant Stiffness (CS)            Constant Interstory Drifts (CISD) 

Figure 1. The Two Classes of Stiffness Distribution Models (Sadashiva et al., 2009) 

 

A study by MacRae and Kawashima (1993) and Yeow et al. (2013) looked at the behaviour of bridge 
columns subject to axial force and moment before earthquake shaking occurred. They showed that 
during earthquake shaking the moment tended to cause extra deformation in the direction in which the 
moment was applied. Because out-of-straightness building structures such as those described in this 
study also have an eccentric moment it would also be expected that these structures also have a 
tendency for larger displacements in the direction in which they are leaning.  
 
Moreover, Masuno et al. (2011) studied the effect of out-of plumb in steel structures. They considered 
the Shear-Flexural Beam (SFB) model as shown in Figure 2. A rigid link between shear beam and 
continuous column slaves the horizontal displacement of the joined nodes. The continuous column 
was pinned at the bottom. A continuous column stiffness ratio, αacci, (MacRae et al. 2004) defines the 
continuous column stiffness relative to shear beam at ith floor was computed using Equation 1 where 
E=Elastic Modulus; Hi=storey height of the ith floor level; Ii=moment of inertia at the ith floor level; 
and Koi=initial stiffness of the ith floor level. Masuno et al. pointed out (i) greater initial out-of-plumb 
generally causes greater response increases relative to structures with no initial out-of-plumb, (ii) 
structures with a greater number of storeys and those with greater design ductility’s also tend to have 
greater response. ߙ௖௖௜	 = ாூ೔ு೔య௄೚೔                                                                                                                    (1) 
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Figure 2. Shear Flexural Beam model (Masuno et al., 2011) 

3 MODELLING AND EVALUATION APPROACH  

The models used in the study by Masuno et al. (2010) are also used in this study. The model is 10-
stories steel structure. That is assumed to have a constant lumped mass, m, of 20,000 kg at each floor.  
The structure is also assumed to have story height, h= 4m. The structure stiffness distribution is 
designed with the CISD Ratio. 

The basic structure was designed as an ordinary building in Wellington close to the fault on site class 
C. Structures were designed with target inter-story drifts of 1.5% 1.8% and 2% and target design 
ductility of 4 according to the Equivalent Static Method in NZS1170.5 (2004). The out-of-straightness 
of 1%, 2%, and are considered in this study. These structures were entered into the programme in their 
deformed configuration before the seismic analysis started. 

The twenty SAC (SEAOC-ATC-CUREE 2000) earthquake ground motion records for Los Angeles 
with probability of exceedance of 10% in 50 years were used.  The dynamic inelastic time history 
computer programme RUAUMOKO was used in this project to run the analysis. Input files for 
RUAUMOKO are generated using MATLAB (The MathWork Inc 2008). The two programmes are 
automated to run analysis and the desired output values are extracted in the process the analysis. Bi-
linear hysteresis loop with bi-linear factor of 1% was used for shear beams and continuous column of 
the model. Critical damping of 5% is adopted from study of Sadashiva et al. (2009). P-delta effects 
were considered. 

The analysis results from RUAUMOKO were divided in two major groups; models perfectly straight; 
and models initially out-of-straight. By assuming that the distributions of the peak and residual 
interstorey drifts ratio (ISDR) are lognormal (Cornell et al. 2002), the median is found using Equation 
ොݔ .2 = ݁ቀభ೙∑ ௟௡	(௫೔)೙೔సభ ቁ                                                                                                           (2)   

where	x୧ = peak	or	residual	interstorey	drift	ratio	(ISDR)	due	to	i୲୦	record	 
     							n = total	number	of	earthquake	records	considered. 
 

4 EFFECT OF OUT-OF-STRAIGHTENESS 

Figure 3 indicates that for a 10 story steel structure the residual displacement increased with increasing 
target design drift and out-of-straightness. For this CISDR model, the peak drift occurred at the base of 
the structure as shown in Figure 4. 
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