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ABSTRACT: This study presents a new method to find the optimal control forces for 
magnetorhological (MR) dampers. The method uses three algorithms: discrete wavelet 
transform (DWT), linear quadratic regulator (LQR), and clipped-optimal control 
algorithm. DWT is used to obtain the local energy distribution of the motivation over the 
frequency bands in order to modify of the conventional LQR. Clipped-optimal control 
algorithm is used in order to approach the MR damper control force to the desired 
optimal force that is obtained from modified LQR. Moreover, Bouc-Wen 
phenomenological model is utilized to investigate the nonlinear behaviour of the MR 
dampers. The method is applied on single-degree-of-freedom (SDOF) systems subjected 
to a Next Generation Attenuation (NGA) projects near fault earthquake. The results 
indicate that the proposed method is more effective at reducing the displacement 
response of the structure in real time than conventional LQR controllers. 

1 INTRODUCTION 

With the development of construction techniques, it is possible to build large-span bridges, pipelines, 
dams, high-rise buildings. However, this achievement also generates new problems; specifically, how 
these structures can be protected from external excitation such as strong winds and severe 
earthquakes. One of the solutions to reduce tragic consequences of natural hazards is using 
supplemental control devices that can reduce the response of civil engineering structures and protect 
them from damage under external loadings.  

The structural control systems can be classified as active, passive or semi-active. Active systems are 
complex and expensive because they require force actuators. On the other extreme hand, passive 
control systems do not require an external power source to control of structure have been shown to be 
effective, robust, economical solution. An interesting and appealing improvement of passive control is 
given by semi-active control systems which require only a small external power source for operation 
(e.g. a battery). The semi-active devices cannot destabilize the structure because they do not input the 
energy to the system and just absorb or store vibratory energy (chase et al., 2006). They only need a 
small amount of external power to be operated. Because of this low dependence on external power 
sources and the removal of instability concerns, semi–active systems may become an attractive 
solution for the improvement of reliability of low-damage system, regardless of the uncertainties on 
the input ground motion. 

Among many other semi-active devices that could be used as dampers in the structures, the MR 
damper achieves high-level adaptive performance (Fig 1). Mechanical simplicity, high dynamic range, 
low power requirements, large force capacity, high stability, robustness, and reliability are among 
desirable features of the MR dampers. MR dampers are capable of generating controllable damping 
forces by using MR fluids. MR fluids are composed of magnetized tiny particles that are scattered in a 
mineral liquid such as silicon oil. When a magnetic field is applied to this liquid, particle chains form 
just in a few milliseconds, and the fluid becomes a semi-solid which exhibit plastic behaviour. 

Although the MR damper is promising in control applications, its major drawback lies in the inherent 
non-linear behaviour of the MR dampers and modelling the dynamic behaviour of them. There are 
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2 MODIFIED BOUC-WEN MODEL  

The schematic of the MR damper mechanical model for the modified Bouc-Wen model is shown in 
Figure 2b.In this case, nonlinear force of MR damper is calculated by (Yang et al., 2002): ܨ = ݖ	ߙ	 +	ܿ଴	(ݔ +ሶ ሶݕ ) +	݇଴	(ݔ − (ݕ +	݇ଵ	(ݔ − ሶݕ	ܿଵ	଴)                                                     (1) =ݔ + ݇ଵ	(ݔ −  (଴ݔ
Where α is Bouc-wen model parameter related to the MR material yield stress and z is hysteretic 
displacement of model given by: ݖሶ = ሶݔ|ߛ− − ሶݕ ௡ିଵ|ݖ|		ݖ	| − ሶݔ)ߚ	 − ሶݕ ௡|ݖ|( + ሶݔ)ܣ −  ሶ)                                                  (2)ݕ

ሶݕ   is defined as:  ݕሶ = 	 ଵ௖బା௖భ ݖ	ߙ}	 +	ܿ଴	ݔሶ + 	݇଴	(ݔ −  (3)                                                                                                                       {(ݕ

Where c0 is the viscous damping parameter at high velocities; c1 is the viscous damping parameter for 
the force roll-off at low velocities; k0 controls the stiffness at large velocities; k1 represents the 
accumulator stiffness; x0 is the initial displacement of the spring stiffness k0; ɣ, β and A are adjustable 
shape parameters of the hysteresis loops, i.e., the linearity in the unloading and the transition between 
pre-yielding and post-yielding regions. 

Figure 2.  Mechanical model for MR damper: (a) Simple Bouc-Wen model, (b) modified Bouc-wen model. 

 

Optimal performance for MR damper control systems is gained by varying applied voltage to the 
current driver according to the measured feedback at any moment. Thus, to determine a 
comprehensive model that is valid for fluctuating magnetic fields, parameters α, c0, c1 and k0 in 
Equations 1-3 are defined as a linear function of the efficient voltage u as given in Equation 4 to 
Equation 7. (ݑ)ߙ = 	ܽ௔ + ܽ௕(4)                                                                                                           ݑ ݇଴(ݑ) = 	݇଴௔ + ܽ௕(5)                                                                                                        ݑ      ܿ଴(ݑ) = 	 ܿ଴௔ + ܿ଴௕(6)                                                                                                        ݑ ܿଵ(ݑ) = 	 ܿଵ௔ + ܿଵ௕(7)                                                                                                        ݑ 

To accommodate the dynamics involved in the MR fluid reaching rheological equilibrium, the 
following first order filter is employed to calculate efficient voltage, u. ݑ = ݑ)ߟ−	 − ሶ(ݒ                                                                                                                (8) 
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 Where, v and u are input and output voltages of a first-order filter, respectively; and ɳ is the time 
constant of the first-order filter. 

 Figure 3 illustrates the comparison between the response of this model and the experimental results 
for a 3kN MR damper in a real control condition that a damper would face during the control time. It 
is obvious that this model is capable of predicting MR damper nonlinear behaviour very well.  

Figure 3. Predicted response by the Bouc-Wen phenomenological model in comparison with the 
experimental data for a 3kN MR damper in a control simulation test (Spencer et al., 1997). 

 

3 INTEGRATED STRUCTURE-MR DAMPER SYSTEM  

 

When n-degree-of-freedom (N-DOF) systems with r MR dampers are subjected to external excitation 
and control forces, they govern equations of motion and can be written as: ܯ	(ݐ)ݍሷ + ሶ(ݐ)ݍܥ + (ݐ)ݍܭ = .ܮ (ݐ)ݑ + .ܪ ௘݂(ݐ)                                                             (9) 

where C, and K  are the mass, damping, and stiffness matrices of the structure without dampers, 
respectively. If “q” in Equation 9 is taken as the relative displacement with respect to the ground, then 
mass matrix M is considered to be diagonal. Damping matrix C takes a form similar to K. ݍ = ଷݍଶݍଵݍ	]  ௡]                                                                                                        (10)ݍ…

Displacement vector is defined as q(t) = n×1 and qi is the displacement of ith floor relative to ground 
(i = 1, 2, . . . , N), control force vector, u(t), is of the order l×1, and fe(t) is the external dynamic force 
vector of dimension r × 1, L and H are n × l and n×r location matrices, which define locations of the 
control forces and the external excitations, respectively. A state-space representation of Equation 9 
can be written as: {ݔሶ } = {ݔ}[ܣ] + {ݑ}[ܤ] + [ܧ] ௘݂                                                                                     (11) 

Where 
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{ݔ} = ቂ௤(௧)௤ሶ (௧)ቃ                                                                                                                    (12) 

{x} is the state vector of dimension 2n × 1, and ܣ = ൣ ଴ିெషభ௄ ூ							ିெషభ஼൧                                                                                                   (13) ܤ = ൣ ଴ெషభ௅൧                                                                                                                     (14) ܧ = ൣ ଴ெషభு൧                                                                                                                    (15) 

2n×2n, 2n×l, and 2n×r are the system matrix, control location, and external excitation location 
matrices, respectively. The matrices “0” and “I” in Equations 13 to 15 denote the zero and identity 
matrices of size n×n, respectively. The LQR algorithm can determine the optimal control forces for 
the system with the aim of minimizing the cost function. The cost function is a quadratic function of 
the control effort and the state. The cost function is defined as  ܬ = ׬	 ௧௙଴{ݔ}[ܳ]்{ݔ}] +  (16)                                                                        ݐ݀[{ݑ}{ܴ}]்{ݑ}

The matrices Q and R are called the response and control energy weighting matrices, respectively. The 
optimal control force vector at each time step can be given as ௢݂௣௧ = −ܴିଵ(17)                                                                                                        ்ܵܲܤ 

where P is the Riccati matrix and S is the state feedback of the system at each time step. 

Semi-active control systems are typically highly non-linear. One algorithm that has been shown to be 
effective for use with the MR damper is a clipped-optimal control approach, proposed by Dyke, et al. 
(1996). The clipped-optimal control approach is to design a linear optimal controller that calculates a 
vector of desired control forces based on the measured structural responses and the measured control 
force vector applied to the structure. If the magnitude of the force produced by the damper is smaller 
than the magnitude of the desired optimal force and the two forces have the same sign, the voltage 
applied to the current driver is increased to the maximum level so as to increase the force produced by 
the damper to match the desired control force. Otherwise, the commanded voltage is set to zero. The 
algorithm for selecting the command signal for the MR damper is stated as ݒ௜ = ௠ܸ௔௫ܪ({ ௖݂௜ − ௜݂} ௜݂)                                                                                              (18) 

Although a variety of approaches may be used to design the optimal controller, LQR methods are 
advocated because of their successful application in previous studies. The approach to optimal control 
design is discussed in detail in (Mohajer Rahbari 2013). 

4 MODIFIED LQR METHOD  

 In this study, the real time DWT controller is updated at regular time steps from the initial time (t0) 
until the current time (tc) to achieve the local energy distribution of the motivation over frequency 
bands. The time interval under consideration [t0, tc] is sub-divided into time window bands. The time 
of ith window is [ti-1, ti] of which the signal can be decomposed into time frequency bands by wavelet. 
Through discrete wavelet transform (DWT) with multi-resolution analysis (MRA) algorithm the exact 
decomposition of signals over a time window bands are obtained in real time. The local energy 
content at different frequency bands over the considered time window are given by the MRA. It is 
obvious, the frequency contains maximum energy is domain frequency of that window. When the 
domain frequency of each window closes to the natural frequency of the system, the resonances 
occurred in the structure. This causes high displacement response in system. To mitigate the 
displacement responses of structure, the high control force is needed. In order to mitigate the 
responses of structure, it is suitable to decrease the value of the control energy weighting matrix[R]. 
The advantage of this local optimal solution is that it has the ability to change the value of the matrix 
R on especial frequency in contrast to the classical LQR which is a global optimal solution. To 
achieve this, the control energy weighting matrices are updated for every time window by a scalar 
multiplier and can be defined as: 
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5 CASE STUDY  

In this section, to investigate the potential application of proposed method, the results of dynamic 
analysis of the typical SDOF with only one MR damper which has been excited by a Next Generation 
Attenuation (NGA) projects near fault earthquake are discussed (Baker 2007). The ground motion 
considered is the fault normal component of the 1994 Northridge at Sylmar-Olive View Med FF site.  
The SDOF system considered is assumed to have natural period of 1 second and a mode damping ratio 
of 2%. Moreover a MR damper with the capacity of 3 kN is installed to control the seismic responses 
of system. Optimal values for Bouc-Wen phenomenological model parameters for this damper are 
given in Table 1 and the maximum input voltage for this damper is equal to 2.25V. 

Table 1. parameters for MR damper model. 

Parameter                     value  Parameter                     value  

C0a                                                  21.0 N s cm-1  αa                                    140 N  cm-1 
C0b                                                  3.50 N s cm-1  V-1  αb                                                       695  N cm-1

  V
-1  

K0                                                   46.9  N  cm-1  γ                                    363 cm-2 
C1a                                                  283 N s cm-1  β                                    363 cm-2  
C1b                                                 2.95 N s cm-1  V-1  A                                   301 
K1                                                  5.00 N  cm-1  n                                    2  
X0                                                  14.3 cm 
 

 η                                   190 s-1 

 

The parameter δ used for scaling the weighting matrices is 0.1when the central frequency of each 
window band is close to the natural frequency of the SDOF system, and for others frequencies is 
assumed to be 1. Hence, the weighting matrix component [R], equals to 0.1 [I] for resonance 
frequency bands and for the rest of the frequency bands it is kept as [I]. In addition, the matrix Q is 
chosen as identity for each band. Daubechies wavelet of order 4 (db4), is used as a mother wavelet to 
decompose the time history of acceleration for different window bands, to determine the frequency 
distribution of each band. The Daubechies wavelets have reasonably good localization in time and 
frequency to capture the effects of local frequency content in a time signal, and allow for fast 
decomposition by using MRA. The signals recorded in real time are decomposed for each interval 
window, which is considered as 1 second for updating. The gain matrices are updated for each 
window by solving the Riccatti equation. Therefore, the control forces and controlled responses are 
calculated. The MATLAB software is utilized to calculate all computation. 

 

Table 2. Peak Responses due to the Northridge Earthquake. 

Control Method Displacement(mm)  

Uncontrolled  237.36  
Pass-off  185  

Reduction%  22.05%  
Pass-on  142.42  

Reduction%  39.74%  
LQR  149.15  

Reduction%  37.16%  
Wavelet-LQR  142.40  
Reduction%  40.1%  
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Because the proposed method has the ability to vary its properties according to the external load to 
more effectively control the structure, this method performed better than both the passive-off and 
passive-on control systems. Based on these results, it is concluded that the proposed semi-active 
control system might be the right choice for reduction responses of structures. 
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