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ABSTRACT: In monolithic reinforced concrete structures, portions of the floor slabs act 
as flanges to the girders, thereby increasing the strength and stiffness of the girders. The 
question of how much the slab contributes to the lateral strength is very important for the 
design of structures; therefore this paper describes the effect of slabs at the joints in 
moment-frame structures subjected to large seismic deformations. A simple method to 
model a beam-column joint subassembly including the effects of both beam 
growth/elongation and the floor slab is introduced. The model is developed by 
establishing the slab crack pattern at the joint and the state of strain in the slab bars. The 
results of the models excluding and including slab effects are verified with the 
experiential test results. The joint model is incorporated in the nonlinear dynamic 
analyses for a five-storey and four-bay moment frame structure. Two different ground 
motions (El-Centro 1940 and Northridge 1994) are considered for the analyses. The 
results show that the cyclic inelastic bending causes the beams to increase in length and 
the floor slabs significantly restrain this phenomenon and cause the columns to displace 
by different amounts, changing the distribution of shear among the columns, and 
increasing the base shear of the columns. These additional forces may lead to a failure 
mechanism different from the anticipated one. The effect of floor slab including beam 
elongation effect is thus illustrated for a two dimensional moment frame building and this 
model works well for the lateral load analysis of frames. 

1 INTRODUCTION  

The behaviour of RC beam-column connections are complex and several experimental investigations 
have been conducted in the last three decades to identify the failure initiation mechanism, to make the 
necessary design changes to prevent a catastrophic failure. However, the floor slabs effect were 
underestimated or ignored for the seismic performance of buildings. In seismic conditions involving 
reversed cyclic loading, anchorage requirements assume great importance in deciding the sizes of the 
members, also the requirement of adequate flexural strength of columns, to ensure beam yield 
mechanism. The case of the bond deterioration for the beam bars which passing through the joint 
region will prevent the beam flexural yielding and allows the yielding to be extended to the column, 
this type of detailing is referred as “gravity load frame” (non-seismic frame) and this might cause 
severe strength degradation leading to particularly brittle failure mechanism. 

Formation of the plastic hinges at the beam ends near the column face will produce the beam 
elongation phenomena, due to concrete cracking and yielding of the main reinforcement under revised 
cyclic loading. This phenomenon (“beam elongation”) was first described by Fenwick and Fong 
(1979); and it was very clearly seen in the 2010-2011Canterbury earthquakes.  

Several analytical techniques were conducted to investigate the behaviour of beam-to-column joints 
subjected to cyclic loading. These studies utilized both bond-slip deformations and joint shear 
deformation in poorly detailed RC frame joints, e.g. Filippou (1993); Elmorsi et al (2000); Calvi et al 
(2002); Fabbrocino et al (2004); Eligehausen et al (2006); and  Favvata et al (2008). Most of these 
researches concluded that the strength loss in joints cannot be predicted accurately by considering 
bond-slip response and employing a slip-based failure criterion. Despite the extensive analytical and 
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experimental studies conducted, discrepancy still exists between these studies in accurately predicting 
the shear capacity of the joints. The errors were mainly due to elongation of plastic hinges not being 
captured accurately. However, in all these models floor slab has been neglected or only partially 
considered (Unal and Burak 2013) as a strength contributing factor for seismic performance of the 
joints. Also these models did not account together for the beam elongation and slab effects at the 
connections. Fenwick and Davidson (1995) proposed a simple analytical model for beam elongation 
without considering the slab effect. A six storey, three-bay frame was analyzed, with and without the 
beam elongation elements. The greater beam elongation occurred with greater beam depths and storey 
drift ratios; so they have suggested that the beam elongation is proportional to the beam depth hb and 
to the number of bays nb. A beam elongation coefficient β is defined by:  

 β= Δ /[ nb hb (θ- θo)] (1) 

where Δ=beam elongation at a floor; θ=storey drift ratio; and θo threshold drift ratio, beyond which 
beam elongation occurs (0.5%). The physical interpretation of beta is that β multiplied by the beam 
height is approximately twice the distance between the neutral axis and the mid height of the beam; 
therefore, they suggest a value of approximately 2/3 for this coefficient. 

Kim et al (2004) developed a joint model to represent the nonlinear behaviour of beam-column joint 
for reinforced concrete frame. The joint itself was assumed to behave rigidly and all inelastic actions 
were assumed to be at beam-column interface, the model was verified with experimental results of 
Zerbe and Durrani (1989) and the model captured clearly the beam elongation effect. Five storey, 
four-bay RC frame was analyzed with and without considering the beam elongation. Significant 
changes in the distribution of forces were observed considering the beam elongation effect; however 
this model did not consider slab effect. 

Only a few have considered gap opening (beam relaxation) effects, which influence the frame/slab 
behaviour, such as Shahrooz et al (1992), the model was limited to the monolithic loading only. 
MacRae and Umarani (2006, 2007) have proposed a concept for considering slab effect on building 
seismic performance. They have developed simple model for explicit evaluation of the slab effect on 
moment-resisting structural systems which considers the slab contribution to the beam over strength. 
The model captures important aspects of the behaviour of reinforced concrete joint with a floor slab 
well. However, these studies were limited to single connections. Other very sophisticated models 
considering both effects were developed by Lau (2007); Peng (2009); Gardiner (2011). The models 
are very sophisticated, it requires large computational effort and time, accurate meshing and sufficient 
storage for the results. In despite the relative complexity of the model, there were some discrepancies 
between the analytical predictions and the experimental results. 

The present paper initially analyses some test results, relevant to two subassemblies specimens tested 
under cyclic loads, to evaluate the effect of the slab and beam elongation. Successively, numerical 
simulations based on Finite Elements Models (FEMs) developed using the RUAUMOKO-2D have 
been performed to apply a simple model for a beam-column subassembly with a reasonable calibration 
for both the beam elongation/relaxation and the slab effects. The model developed should be capable 
of simulating pinching effect and stiffness degradation with expected hysteretic loop as in reinforced 
concrete structures; and finally, to examine the behaviour of a five-storey, four-bay reinforced 
concrete frame under dynamic loading conditions considering both slab effect and beam growth. 

2 EXPERIMENTAL PROGRAM 

2.1 Design of prototype frame  

The prototype building was 27.6m long, 20m wide, five-storey high and four perimeter frames, 
spanning four bays in the longitudinal direction. The framing systems in the transverse direction were 
not considered in this study. The elevation view of the perimeter frame is given in Figure 1a. Each bay 
spanned 6.9m, and the storey height was 3.5m throughout the building. The typical lower interior 
subassembly, illustrated in Figure 1b, was considered for the experimental investigations. The 
prototype structure was designed for zones of high seismicity, Seismic Zone IV (PGA=0.5g) in 
accordance to the UBC (1997) assuming standard occupancy, type D-stiff, soil profiles. The effective 
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was applied and kept constant throughout the entire test. More details on the test set-up and on the 
experimental program as a whole, can be found in (Ahmed and Umarani 2014). 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

(a) Longitudinal reinforcement details (specimens J and JS)       (b) Section details (specimens J and JS) 

 
 
 
 
 
 
 
 

       (c) Section in the slab (specimen JS)                                 (d) Reinforcing view (specimen JS) 

Figure 2. Reinforcement details of the specimens 

      Table 2. Reinforcement properties                 Table 3. Concrete strengths 

Ave 
 

Yield 
strength, fy 

(MPa) 

Yield strain, 
εy 

(μmm/mm) 

Ultimate 
strength, fu. 

(MPa) 

Elongation 
(%) 

 Ø6 469.3 2420 604.3 23.0 
Ø8 459.0 2300 578.4 18.0 

Ø10 451.1 2375 539.1 19.1 
Ø12 477.2 2330 603.2 10.9 

 

Unit description J JS 

28-days  (MPa) 44.89 37.06 

At testing day 
(MPa) 

50.55 44.83 

3 EXPERIMENTAL RESULTS  

The two specimens performed in a ductile manner, with a plastic hinge forming at the beam end near 
the column face. There were only fine cracks in the column over the whole height, indicating that the 
column did not suffer major inelasticity. The desired strong-column weak-beam behaviour of the 
ductile frame was, therefore, achieved. No bond slip losses in the bars throughout the joint region, as 
in both specimens hc/db ratio specified by ACI 352R (2002) (the ratio of the column depth to the 
largest bar diameter passing continuously through the joint) was 25, and greater than 20×fy/420 that 
provides longer development lengths and thereby minimizing the likelihood of the bar slips inside the 
joint region and prevent the extension of yielding to the column. This also will ensure stabile 
hysteretic loops and less pinching effect with large energy dissipation capacity at a beam/column 
interface (within the plastic hinge region), as well as it provides a better observation for the beam 
elongation. As the main objective of the present paper is to identify the slab effect on the beam 
elongation, the experimental results of the two specimens relating to the beam elongation/ relaxation 

Dimensions in mm 

Ø8 @250 mm c/c 

Ø6 @ 200 mm c/c 

Column  Beam  

N 
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shown in Figure 7. Thus, in the current model, the effective slab segment between the yield lines 
where cracking is expected, as shown in Figure 8.  

The effective steel in the slab (effective slab segment) is assumed to be anchored outside this zone. 
The stiffness property of slab reinforcing steel, (kbi=EAb/Ls

i ) is calculated, based on the length of yield 
of each bar within effective width. The effective slab width in tension (beff) shown in Figure 8 are 
calculated as effective of main beam width plus two times the beam height from each side of main 
beam (Pantazopoulou et al 1988, Zerbe and Durrani 1990). 

5 RESULTS OF ANALYTICAL VERIFICATION 

The model was used to evaluate the cyclic behaviour of beam-column subassemblies with and without 
floor slab that were tested in the current study. The element properties were directly related to the 
physical properties of the system. Figure 9 shows the comparison of the model results with the 
experiment results. A satisfactory agreement between the analytical and experimental results is 
observed. The hysteretic curves drawn to the same scale are the most significant results. Since the 
measured and predicted values were similar during cyclic loading, the slab effect at the subassemblies 
appeared to be significant.  
 

 

 
 
 
 
 
 
 
 
 

Figure 9. Validation of model with test results 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 10. Beam elongation/relaxation vs. drift ratio for both specimens 

The pinching effects shown in the global behaviour are essentially caused by both yielding of the 
reinforcements and concrete cracking at the plastic hinge regions. Both the models, including and 
excluding the slab effect can account for the influence of the beam elongations with reasonable 
precision (Figure 10). It can be noted that, the beam elongation increases as the flexural inelastic 
deformation increases. However, during repetition of the same cycle, with no increase in the flexural 
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deformation, member elongation continues to increase. Also the floor slab can significantly reduce this 
elongations, especially at a large deformation levels (drift ratios >1.5%). This effect can be further 
investigated in the analysis of the multi-connections frame; however, the elongation of the main beams 
is partially restrained by the exterior columns, which results in axial compression in the main beams.  

6 BEHAVIOUR OF PROTOTYPE FRAME UNDER SEISMIC LOADING  

To complement the experimental and analytical investigation on the seismic performance of the 
connections, a series of inelastic dynamic analyses were performed on the prototype frame under 
selected earthquakes to study the influence of the floor slab on the overall behaviour of the prototype 
frame. The classical Newmark integration method was used (γ=1/2, β=1/4), with a time step of 
∆t=0.01s and a total of 2000 steps (input time: 20sec.) for integrating the produced equation of motion. 
The distribution of mass in the model was using the lumped mass approach. The damping coefficients 
were chosen such that the viscous damping for the entire structure was 5% (Chopra 2000). Two 
ground motion records, representing different characteristics and intensity were chosen for the 
dynamic analyses: The El-Centro (1940) records (PAG=0.348g) were selected to represent far field 
ground motions while the Northridge (1994) records (PAG=1.284g) were selected because of their 
near-fault characteristics. Two analytical models were developed to represent the behaviour of an 
indeterminate reinforced concrete frame. The RFIS model included the slab effects, while the other 
model (RFES) was based on excluding this effect. By comparing the RFIS and RFES model 
responses, the effects of the floor slab could be examined. 

6.1 Global responses 

The results of the typical base shear response for the RFIS and RFES models under Northridge 
earthquake are plotted in Figure 11. The floor slab at the frame joints appeared to be significant; the 
maximum base shear of the RFIS model was 28% higher than the model based on excluding this effect 
(RFES model). The floor slab effect on the individual response characteristics are discussed below: 

 

 

 

 

 

 

 

 
Figure 11. Column base shear response for the prototype frame under Northridge earthquake (1995) 

i) Columns response: The distribution of maximum storey shear demand from the two seismic events 
is shown in Figure 12 for the RFIS and RFES models. Under El-Centro earthquake the  
ratios of the base columns shear of the RFIS model to that of the RFES model were 1.09 and 1.03 
in positive and negative loading directions, respectively. A tension floor slab effect had a larger 
participation under lager seismic events when the yielding started to occur and the beams started to 
growth in its length. Under the Northridge earthquake, the ratios of the base columns shear of the 
RFIS model to that of the RFES model were 1.10 and 1.28 in positive and negative loading  
directions, respectively. This was reasonable, since the RFIS model had a higher stiffness value 
compared to the RFES model, especially after beam elongation started to occur. However, a larger 
base shear forces will be expected due to the presence of the slab with larger drift deformation  
levels. 
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ii) Column moments demands: The maximum column moments at the first storey for the RFIS and 
RFES models are compared in Figure 13. The bending moments in the ground storey columns is 
increased in an average of 5% and 12% due to the tension slab, corresponding to EI-Centro, and 
Northridge earthquakes respectively. These increases were due to the floor slabs restraining the gap 
opening at the first floor level and thereby inducing beam axial forces. These forces increased the 
bending moments by the fact that the column bases are fixed to an inextensible foundation. 
 

 
 

 
 
 

 
 
 
 
 
 
 

Figure 12 Distribution of maximum storey shear under (a) El-Centro and (b) Northridge earthquakes 
 

 

 

 

 

 

 

Figure 13. Distribution of column moments at first storey  
 

 

 

 

 

 

 

 

Figure 14. Base axial fluctuation of outermost column (Column A) and the column near central column 
(Column B) under (a) El-Centro and (b) Northridge earthquakes 
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iii) Column axial load fluctuation: A large amount of axial load fluctuation was observed for the 
outermost column (columns A and E), as shown in Figure 14. The responses did not produce 
tensile force on the outermost column with an intense seismic excitation, but it was close to 
that,  
especially under Northridge Earthquake when the slab effect was considered. In general, both 
earthquake excitations produced less significant fluctuation for the other columns (columns B, 
C and D) compared with the outermost column. 

6.2 Effects of beam elongation/relaxation  

The hysteretic curves of the total beam elongation at each floor level for the RFIS and RFES models 
under the two ground motions (Figures 15 and 16), demonstrated that the beam elongation occurs at 
all floors of the frame. It is significantly larger in the floors with higher levels of drift ratio. It is clearly 
shown, the beam elongations were insignificant at drift ratios lower than 1.5% (El-Centro earthquake); 
as the inter-storey drift angle exceeded 1.5% (approximately the limit of the yielding) the beam 
 elongations increased significantly, especially under strong ground motion (drift angle >3.0%). 

The maximum beam elongation values were at the second storey, and become significantly larger at a 
strong ground motions. Since the beam elongation occurs particularly at the column interface, while 
the slab is intact, it restricts the gap opening at the beam ends, and changes significantly the beam 
elongation across the building. In these figures, the estimated beam elongation at each floor level 
which represented by a horizontal dash line, is calculated based on Eq. (1) (by substituting the beam 
depth hb, number of bays nb, threshold drift ratio of 0.5% and the corresponding maximum drift ratio θ 
at each floor level). This equation cannot be used for the drift ratios less than 0.5%, therefore some 
floors did not contains this limit (Figure 15a and e). However, this limit looks under-estimated for the 
first floor and over-estimated for the roof. Generally, it provides a reasonable estimation for the beam 
elongation.  

7 CONCLUSIONS 

As seen in the preceding discussion, ignoring the slab effect is possible to significantly underestimate 
the strength of a structure and the failure mechanism of the structure might be different from the one 
anticipated. The structure may also experience unexpectedly high elongation at all floor levels, if the 
floor slab contribution is not considered properly. The major findings of this study are as follows:  

• The current experimental investigation demonstrated that the elongation of the main beams was 
ineffective at a small drift level below 1.5%. Beyond this stage, the beam elongation was signif-
icantly increased due to extensive flexural cracks developed within the plastic hinge regions. 
However, during repetition of the same cycle, with no increase in the flexural deformation, 
member elongation continues to increase and the floor slab can significantly reduce this phe-
nomenon, especially at a large deformation levels (drift ratio >1.5%). 

• The developed joint model predicts the test results with reasonable precision, and provides a 
simple way of accounting for the effects of slab and beam elongation, without a complicated 
nonlinear Finite Element modeling. However, to accurately evaluate the subassembly behaviour 
for substandard frame building joints (joints non-codal designed), the cases with bond-slip loss 
within the joint should be considered. 

• The multi-storey frame analytical results demonstrated that the beam elongation occurs at all 
floors of the frame. It was significantly larger in the floors with higher levels of drift ratio. The 
floor slabs restrain this phenomenon and cause the columns to displace by different amounts and 
increasing the base shear of the columns. The effect of floor slab including beam elongation ef-
fect is thus illustrated for a two dimensional moment frame building and this model works well 
for the lateral load analysis of frames.  
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Figure 15. Beam elongation vs. central column drift ratio under EI-Centro earthquake  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Beam elongation vs. central column drift ratio under Northridge earthquake 
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