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ABSTRACT: Up to the middle of the last century the main building material was  
masonry, that is why in most countries there are many masonry buildings and many  of 
these have great historical or social value. 
These buildings, located in seismic areas, due to their age are deteriorated by 
environmental and human factors. This combination of factors causes a very alarming 
situation that causes a growing interest toward a new strengthening system. Researchers 
are orientated toward a less invasive and reversible system possibly avoiding resin and 
organic materials.  
Thanks to recent applications, especially on historical buildings, it was possible to realize 
a strengthening system based on application of FRP grid and mortar matrix (FRG). Much 
experimentation was conducted to test the effectiveness of this technology on different 
kinds of masonry. 
The present paper resumes the latest tests carried out by the University of Naples on 
different masonry panels tested under diagonal compression. 
Experimental campaign investigated preliminarily on material properties of based 
component from bricks to reinforcing mortar. 
The experimental results confirmed the effectiveness of the investigated strengthening 
technique to increase the panels shear strength and validated the effectiveness of this 
reinforcing system on different kinds of masonry. 

 

1 INTRODUCTION 

A large number of existing masonry structures shows damages due to a wide range of events (i.e. 
environmental deterioration, inadequate construction techniques and materials, design for gravity 
loads only) or, for the same reason, are subject to an high rise. Several strengthening technique are 
available to reduce the seismic vulnerability of these buildings; however, some of these techniques 
may be too invasive or expensive. Techniques based on the use of technologies and materials 
compatible with physical and mechanical properties of masonry are required to enhance performance 
of such buildings. Among new strengthening strategies, the use of Fiber-Reinforced Polymer (FRP) or 
Fiber-Reinforced Grouting (FRG) strengthening technique offers a series of advantages as the high 
strength-to-weight ratios, low influence on global structural mass, corrosion and fatigue resistance, 
easy handling and installation, and negligible architectural impact. 
Effectiveness of this technique was evaluated by means of a different experimental campaign on ma-
sonry panels tested under diagonal compression.  

The present paper resumes the main experimental results in terms of shear strength, diagonal strains, 
shear deformation as well as elastic parameters (i.e. modulus of rigidity, G, and Poisson ratio, ν) and 
ductility are herein presented and discussed with reference to five tuff panels tested under diagonal 
compression. 
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2 EXPERIMENTAL CAMPAIGN 

During the 3 experimental campaigns, 22 diagonal compression tests are carried out on square 
masonry panels as summarized in Table 1: 
 

Table 1. Tests Matrix 
Cod. Stone Sample n° Matrix Grid 
TN1 Neapolitan Tuff 8 Lime + Cement. Glass + Basalt 
TN2 Neapolitan Tuff 9 Lime Glass 
CA Limestone 5 Lime Glass + Basalt 

 
2.1 Material Properties 

Mechanical properties of tuff units and mortar as well as matrix to bond FRP reinforcement were 
determined by means of experimental tests.  

According to UNI EN 772-2002  tests were performed on cubic stone units, prisms of 
360mm×60mm×90mm were tested in flexure with three point bending in order to evaluate the flexural 
strength according to UNI EN 14580- 2005. 

Prismatic sample  of 40x40x1600 mm  were tested in flexure and compression tests was been carried 
out on two resulting  half according to UNI EN 1015-11 and UNI EN 998-2. 

The mechanical properties of the matrix after 28 days of curing were computed in the same ways; 
cementitious based mortar has: flexural strength of 14.5 MPa; compressive strength of 30.2 MPa; lime 
based mortar has:  flexural strength of 8.0 MPa; compressive strength of 16.1 MPa. The mechanical 
properties of GFRP (see Figure 1a) and BFRP (Figure 1b)  grids were provided by the manufacturer: 
tensile 45 kN/m, Young's modulus of 72.0 GPa, and ultimate axial strain of 2.0% for glass grid; and 
tensile 60 kN/m, Young's modulus of 91.0 GPa, and ultimate axial strain of 2.0% for basalt grid. 

Ties are realized with steel fabric (Figure 1c) with tensile strength of 2086 MPa and elastic modulus of 
210000 MPa, glued by epoxy putty directly on FRP grid. 

 

 
(a) (b) (c) 

Figure 1. Glass (a) and Basalt (b)  grid ; scheme of steel tie (c) 

 

 
2.2 Reinforcement Scheme 

The strengthening system installation procedure involved the following steps: a first layer of mortar 
(thickness of about 6mm) was applied; FRP grid was applied above this and the second layer of mortar 
(thickness of about 6 mm) was applied covering the grid. Details about installation process are 
depicted in Figure 2.  
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The construction procedure of the IMG strengthening system with SFRP ties was approximately the 
same. Five squared pockets were left in the second matrix layer and 200 mm deep and 20 mm large 
holes were drilled to install SFRP ties of 500mm length, which were previously impregnated with 
epoxy resin. Inside the hole was cleaned and prepared with epoxy primer, half of each tie was inserted 
in the hole and another side was spread with in the squared pocket over the grid. Another layer of FRP 
grid was applied above tie spread and finally, squared pockets were filled with mortar. The number 
and size of SFRP ties were selected to strengthen both the central and peripheral parts of the specimen.  

 

 
Figure 2. Strengthening system installation procedure 

 
2.3 Test Setup  

The panels were tested in a four column testing frame, characterized by a 1000 mm wide and 4000 
mm long steel base floor, capable of testing specimens which are more than 4 m high. Its load capacity 
is 3000 kN both in tension and in compression with a total stroke equal to 150 mm.  

The tests were carried out under displacement control, in order to record the panels post-peak 
response; the displacement rate was 0.015 mm/sec for all tests. Tests were stopped when the reduction 
in strength with respect to the peak value was of about 50%. Two steel loading shoes placed on two 
diagonally opposite corners of the panels were used in order to apply the compression load; the test 
layout conforms with ASTM E 519-81. Some changes were introduced in order to adapt the ASTM 
requirements to the masonry blocks dimensions. To avoid a premature splitting failure of panel edges, 
the spaces between the specimen and steel plates were filled with fast setting and shrinkage free 
mortar.  

Five linear displacement variable transducers over a gauge length of 400 mm were used to monitor in-
plane and out-of-plane displacements: two LVDTs were placed on each panel side along the diagonals 
to record the shortening and elongation of vertical and horizontal diagonals, respectively; one more 
LVDT was installed perpendicularly to the panel surface to measure out-of-plane displacements.. 

3 RESULTS ANALYSIS  

The shear strength, τ, is computed on the net section area An of the uncracked section of the panels , 
according to ASTM E519-81 standard test method; in general the shear stress can be obtained as 

0.707
n

V

A
τ = , where V is the current experimental load. The average strains,  εv and εh, have been 

computed as the average displacement on the two sides over the gauge length (400 mm) along the 
compressive and tensile diagonals, respectively.  
As-built specimens suffered stair-stepped cracking involving both bed and head joints along their 
compressed diagonal. First cracking is shown generally along mortar – bricks interface due to low 
strength of mortar adhesion bond. Crack pattern is characterized by few and wide cracks while no 
cracks are visible along load direction or on the edge of the panel near load application. No significant 
out-of-plane deformations were observed on them. 
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FRG reinforcement changes cracking propagation toward a more dissipative scheme. In fact strength-
ened specimens were characterized, independently by the type of grid adopted as reinforcement, by a 
more uniform crack pattern; several cracks less wide than those achieved on control specimens were 
attained on the mortar reinforced by FRP grids.  

Significant out of plane deformations were observed on one side reinforced panels due to the different 
deformation of the two sides. However this deformation takes a significant value after post peak load, 
so at load value is never reached by non-reinforced panel. 

3.1 One Head Neapolitan Tuff  

The experimental program consists in 9 diagonal compression tests on masonry panels. Masonry was 
made of yellow Neapolitan tuff bricks (360mm x 250mm x 115 mm) and a pozzolan (local volcanic 
ash) based mortar (thickness 10 mm). Each panel was eight courses high and one tuff block wide; with 
mortar joints of 10-15 mm thick the resulting dimensions were 1000×1000×250mm.  

Tuff bricks have a compression strength of 4.0 MPa and flexural strength of 2.6 MPa, mortar joint has 
a compression strength of 3.72 MPa and flexural strength of 1.3 MPa. Tests layout is two as built and 
6 reinforced panel. Three of them are  reinforced  with cementitious matrix and glass grid, three with 
lime matrix and glass grid and one with lime matrix and basalt grid.  

The maximum shear stress (τmax) (see Table 2), recorded on the reinforced panels was significantly 
higher than that achieved on control panels with an increase that can reach 300%. Increase is also clear 
in ultimate shear strain (τulti) that is post peak strain at 80% of ultimate load. Reinforcement in post 
peak phase always produces a great increase of shear strain  (γu). 

 
Table 2. Tests Results 

Sample ID Grid Reinforcement Matrix
Vmax 

[kN] 

τmax 

[MPa] 

τu 

[MPa] 

γmax 

[%] 

γu 

[%] 

ΔVmax

[%] 

P1 - - - 49.98 0.14 0.11 0.10 0.53 
 P2 - - - 60.00 0.17 0.14 0.27 0.46 

PGG1 

Glass 2 Sides Lime 

157.31 0.44 0.36 0.23 1.12 

233 PGG2 187.55 0.53 0.42 0.53 1.91 

PGG3 204.60 0.58 0.46 0.28 1.64 

PGG1C 

Glass 2 Sides Cement.

228.81 0.65 0.52 0.18 0.50 

307 PGG2C 231.62 0.66 0.52 0.12 0.81 

PGG2C 210.53 0.60 0.48 0.19 1.00 

PBB1 Basalt 2 Sides Lime 138.78 0.39 0.31 1.23 2.98 152 

 

Crack patterns, according to the test results, show few, wide and scaling cracks for non-reinforced 
panel and, many little and vertical cracks for reinforced panel. Figure 3 shows a moderate increase in 
stiffness for a strengthened specimens only in correspondence to a load value greater than peak value 
of non-reinforced panel. More details can be found on Balsamo et al.2010. 
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