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ABSTRACT: In recent years, growing attention has been given to the effects of 
corrosion on reinforced concrete structures. Marine environment and de-icing salt are two 
causes chloride-induced corrosion. Basically, there are two types of steel reinforcement 
corrosion called general and pitting corrosion. In real corroded reinforced concrete (RC) 
structures, a mix of the general and pitting corrosion usually takes place. Corrosion 
decreases the mechanical characteristics of steel reinforcing.  

In this study, reduction factors of mechanical properties of steel reinforcement have been 
estimated through experimental monotonic tensile tests to take into consideration of 
eccentricity caused by pitting corrosion. Reduction factors have been defined to estimate 
the effect of corrosion on the reduction in mechanical properties of corroded steel bars. 
The reduction factors indicate the percentage reduction in the mechanical properties for 
1% loss of cross-section area of steel reinforcement. 

To meet this aim, pitting corrosion has been simulated by mechanically removing a 
portion of the cross section form 10mm, steel reinforcement. The reduction factors in 
terms of yield stress, ultimate stress, module of elasticity and elongation have been 
estimated from monotonic tensile tests. The relevant deterioration models have been 
developed based on the experimental results, and have been used for section-level 
analysis of a reinforced concrete bridge pier. The results of section-level analysis show 
degradation in moment-curvature and force-displacement of the corroded RC bridge pier 
due to pitting corrosion.   

1 INTRODUCTION 

There are a number of causes of corrosion in reinforced concrete (RC) structures including: chloride-
induced, carbonation-induced, bacterial-induced and stray current-induced corrosion. Chloride-
induced corrosion is generally the most common cause for corroding of RC structures. Chloride-
induced corrosion is an electrochemical process that degrades reinforced concrete (RC) structures. 
While RC structures in pristine condition can be expected to satisfy the code requirement of a given 
era corrosion of reinforcing steel will degrade the seismic capacity of the structure over time. 
Therefore, old corroded RC structures become vulnerable to future earthquakes. Past studies have 
reported some corroded RC bridge in New Zealand  (Bruce and Land Transport 2008, Pank 2009, 
Rogers, Al-Ani et al. 2013). Figure 1 shows examples of real corroded bridge in New Zealand 
(Rogers, Al-Ani et al. 2013). 

There are two corrosion configuration named general corrosion and pitting (or localized) corrosion. 
Figure 2 shows configuration of pitting and general corrosion simulated by accelerated corrosion 
technique. 

According to the literature, there are a number of studies on general corrosion, while few 
investigations have been carried out on pitting corrosion. Pitting corrosion significantly decreases 
cross-section area of steel bars and affects the service life of RC structures. It is worth to note that, 
diameter size of bar affects pit depth. Increasing diameter of reinforcing steel raises pit depth (Stewart 
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can be calculated by given relevant parameters. Figures 8 and 9 show deteriorated modulus of 
elasticity, elongation, yield stress and ultimate stress for different amount of cross section reduction. 
Assuming linear regression, reduction factors for each of these properties have been calculated using 
equation 7 as 0.65, 2.78, 1.19 and 0.81 respectively. The results indicate that further studies are needed 
to estimate the reduction factors of mechanical properties of reinforcing steel, and linear regression 
presented by past studies is not suitable in case of pitting corrosion. While all reduction factors have 
been estimated based on linear regression in the literature, the results show that with exception of 
ultimate stress and modulus of elasticity, the linear regression are not suitable methods basically for 
variation of reduction factors for different amount of corrosion. The reduction in elongation, for 
example, for up to 7.3% corrosion in much higher than that for corrosion between 7.3% and 26.5%, 
and the reduction for corrosion greater than 26.5% is relatively low. The results indicate further 
investigation to estimate reduction factors based dependent on amount of corrosion. 

                          
 Figure 8. Relationship between corrosion and reduction in left: module of elasticity, right: elongation 

                  
 Figure 9. Relationship between corrosion and reduction in left: yield stress, right: ultimate stress 

6 CROSS SECTION ANALYSIS OF A CORRODED RC BRIDGE PIER 

Cross-section analysis is a quite common numerical method to evaluate the key structural parameters 
for the seismic performance R.C. members. Recently research studies incorporated degradation 
models for concrete and steel which allows to predict the long term seismic performance of RC bridge 
piers (Palermo and Pampanin 2008, Ghosh and Padgett 2010, Biondini, Camnasio et al. 2013). 
Corrosion is usually modelled by decreasing cross-section area of steel reinforcement and causing 
reduction in effective mechanical properties of steel reinforcements which leads to reduction in the 
seismic capacity. The moment-curvature and force-displacement relationship have been utilized to 
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small pits. 

4. Pitting corrosion decreases both bending moment and associated curvature indicating 
decreasing in seismic capacity of corroded RC bridge piers. 

5. Pitting corrosion also decreases load carrying capacity and displacement ductility confirming 
corroded bridge pier are more vulnerable in seismic events. 

6. Further investigations are needed to develop deterioration models for pitting corrosion, and 
linear regression, presented by past studies for general and pitting corrosion, probably is not 
suitable in case of pitting corrosion.  
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