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ABSTRACT: Interior connections with steel beams and concrete filled tubular (CFT) 
columns were tested, under cyclic displacement controlled load. Square and circular steel 
tubular columns were considered. A new type of through beam connection, where the 
beam passes through the joint and connects with additional bolted brackets without using 
any welding between the beam and column was considered. The experiments 
demonstrated the capability of the through beam connection with bolted brackets to 
develop the full plastic flexural capacity of the beam. The connections exhibited ductile 
behaviour and the beam failure took place by formation of a plastic hinge in the beam 
away from the joint. The beams had inelastic rotational angles of 0.077 and 0.06 radians 
for the connection with square and circular CFT columns respectively, which were in 
excess of 0.04 radians as recommended by AISC (2002) for high seismic areas. The 
behaviour of the panel region was examined, by comparing calculated and measured 
shear capacities of the panel zone and it was found that the equations used for calculating 
the panel zone capacity were conservative and can be used for design. A simple analytical 
model was developed using RUAUMOKO-2D software in order to predict moment 
capacity of the connections. The analytical results matched well with the test results, and 
this demonstrates the ability of the proposed analytical model to simulate cyclic 
behaviour of through beam connection, very well. The proposed through beam with 
bolted brackets connections performed well and avoids site welding and hence are 
suitable for usage in high seismic areas. 

1 INTRODUCTION 

In high seismic risk areas such as California and Japan, steel-framed buildings have frequently been 
employed because of their excellent performances in terms of strength and ductility. Nevertheless, a 
large number of entirely unexpected severe brittle cracks of welded beam-to-column connections were 
found in the Northridge (1994) and Kobe (1995) earthquakes (Bertero et al, 1994, Kuwamura, 1998). 
The failures raised many questions regarding the validity of design and construction procedures used 
for these connections at the time. Since the earthquake, several extensive analytical and experimental 
studies have been conducted to investigate the various aspects believed to be associated with the 
failure observed in the pre-Northridge connection and to improve connection performance. For 
example, Schneider and Alostaz (1998) tested six large-scale specimens with different stiffening 
details. These details ranged from a very simple detail that attached the girder directly to the tube skin 
to a more rigid detail in which the girder was passed through the tube core. The connection detail that 
best simulated a rigid connection and exhibited good cyclic behaviour was the through beam 
connection detail. Azizinamini et al (2004) and Elremaily et al (2001) showed that this type of 
connections has high strength and plays an important role in buildings survival during a seismic event. 
Kimura and Matsui (2000) and Masuda et al (2000) investigated the performance of CFT column to H 
beam connections with vertical stiffener plates. Kato et al (1992); Morino et al (1992) and Fukumoto 
and Morita (2000) investigated the connections of internal and external diaphragm plates. Cheng and 
Chung (2003) investigated the connection details and shear strength in the panel zone of CFT through 
beam connections. These studies suggested that connections loading the skin of the steel tube only, 
can cause excessive deformation demands on the tube wall and connection components. Embedding 
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connection components into the concrete core alleviates high shear demand on the tube wall, which 
may improve the seismic performance of the connections. The through beam type connection detail 
prevents the transfer of large beam shear forces directly to the steel tube. This helps to prevent the 
steel tube from pulling away from the concrete core. The through beam type connection detail 
eliminates the need for welding thick connection elements to relatively thin steel tubes, which results 
in lower residual stresses than direct welding. However, the through beam type connection with site 
welding has not been favourable in construction practice because it requires considerable work in 
erection and extensive welding as well as it needs high tolerance in detailing.  

Therefore, there is a need for studies on steel beam-CFT column connections that are practical, easy to 
assemble and provide good performance, where the region of yielding is moved away from the area of 
significant welding, to avoid the limiting possibility of premature weld fracture, and to avoid site 
welding, so that the construction quality and speed can be improved. The present study has a three-
fold purpose: 

• Investigating experimentally the seismic performance of through beam connections, where the 
beam passing through the joint and connected with additional bolted brackets without using 
any welding between the beam and the column.  

• Examine the panel joint region of through beam connection. 
• Developing a simple analytical model to simulate the response of the through beam type 

connection. 

2 EXPERIMENTAL PROGRAM 

2.1 Test specimens and configuration  

The experimental program is composed of half-scale models of interior steel beam to square CFT 
column (SCFT) and circular CFT column (CCFT) subassemblies as shown in Figure 1. The design 
philosophy adopted in this study is to have a strong column; strong connection and weak beam. 
Applying this philosophy to connection required that all yielding would occur only in the beams while 
the connections, panel zones and column were designed to remain elastic throughout the testing. 

The details of the test specimens are shown in Figures 2 and 3 respectively. These specimens consisted 
of steel beams passing through the column to represent an interior joint in a building. An opening in 
the shape of the steel beam but with 2 mm oversize was cut in the steel tube (column), to allow the 
girder to pass through the column. There was no welding between the steel beam and the column. This 
eliminates field welding, which is time-consuming and costly. A silicone layer was used to fill all the 
gaps on the outer surface, to prevent leaking of the fresh concrete and water. Flat bolted brackets and 
curved bolted brackets for specimens SCFT and CCFT respectively are shown in these figures. This 
bracket is similar to the cast steel Kaiser Bolted Bracket (KBB), pre-approved for special moment 
frame connections, by the ANSI/AISC 358 seismic provisions (2010). It reinforces the beam portion 
near the column, moving the location of the critical moment away from the column face. 

 

 

 

 

 

 

 

 

Figure 1. Test specimens with through beam type connections 

(b) CCFT  
(Circular CFT column) 

(a) SCFT 
(Square CFT column) 

Curved bolted bracket Flat bolted bracket 
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response as the test results, though some differences of reloading stiffness exist. 

 

 

 

 

 

 

 
 Figure 8. Beam moment vs. total rotation Figure 9. Beam moment vs. total rotation 
    for specimen SCFT     for specimen CCFT 

The comparison of the energy dissipation capacity for both specimens is shown in Figure 10. It can be 
found that the analytical energy dissipation capacity is similar to the experimental energy dissipation 
capacity for this type of connection, indicating that the model provided reasonable correlation with the 
experimental measurements. However, specimen SCFT exhibited larger energy dissipation capacity 
than the specimen CCFT since it had sustained a greater number of cycles. The comparison of the 
envelope curve is shown in Figure 11. This figure illustrates that the analytical envelope curves for 
both specimens are in closer correlation with the experimental measurements. 

 

 

 

 

 

Figure 10. Dissipated energy vs. rotation curves for the test specimens 

 

 

 

 

 

 

 

 

 

Figure 11. Comparison of envelope curves for the test specimens 
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6 PANEL JOINT 

6.1 Joint shear deformation 

To monitor the overall joint shear deformation in an average sense, two LVDTs were installed at the 
face of the joint in each specimen in “×” shape (Figure 12a). The joint shear strain was calculated 
using Eq. (1): 

 [ ]21

22

j ΔΔ
h b. 2.

hb
= γ ++

           (1) 

 

  

 

 

 

 

 

 

 

 

Figure 12. Joint shear deformation (a) Panel zone shear deformation measurement (b) typical interior 
beam-column joint test setup and (c) its joint panel 

On the other hand the joint shear strength is evaluated, by studying the equilibrium of the horizontal 
forces on a horizontal plane at the mid height of the joint, as shown in Figure 12b and c. Assuming 
that the beam bending moment is carried entirely by the flanges, the tensile and compressive forces in 
the beam flange, Tf  and Cf , are estimated as: 

 
d

b
ff

j

M
C= T =                                            (2) 

where Mb is the beam moment at the joint face; and jd is the internal lever arm for calculating the 
moment ( jd=d-tf ).The effective horizontal shear force acting on the joint panel, Vjh is calculated using 
Eq.( 3): 

  V-)C(TV Cffjh +=                                                             (3) 

where VC is the column shear force and is estimated from the beam moments at the  joint face using 
Eq.( 4): 
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                                                           (4)  

The joint shear is expressed as follows: 
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MbN and MbS are the beam moments at the joint face, and are equal to  [ ])2/b()2/L(V jbN −× and 

[ ])2/b()2/L(V jbS −×  respectively. Substituting Eq. (5.5) in Eq. (5.4), the joint shear force is 

expressed as given in Eq. (6): 

(a) (b) (c) 
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Where, L is the total length of the beam (includes south and north beam), bj is the width of the joint 
panel, and h is the total length of the top and bottom columns; (subscripts S and N refer to the South 
and North directions, respectively).  

6.2 Evaluation of nominal shear capacity at the panel zone 

The joint nominal shear force capacity is calculated, using Eq.(7).  

 wfncntnn VV V=V ++                                                                                                             (7) 

The shear capacity of the steel tube (Vtn) is calculated using Eq. (8) (Krawinkler 1978) for the steel 
tube. For the concrete core the shear capacity (Vcn) is calculated based on ACI-ASCE 352 (1985) 
recommendations for reinforced concrete joints confined on all four vertical faces of the joint; since 
the joint in a CFT column is confined by the tube wall, it is reasonable to consider the same value as 
that recommended for confined joints and is presented in Eq. (9). 

 









3

F
A=V yt

shttn                                     (8) 

 shcccn Af 1.99=V ×′                                                      (9) 

where Fyt and cf ′  are the yield strength of the steel tube and concrete compressive strength 
respectively, while Ashc and Asht are the horizontal effective shear area for the concrete core and the 
steel tube respectively. The effective shear area of the circular tube is given by 2/td tcπ , (Boresi et al 

1993), and that of the rectangular tube is given by wfc t)t2d(2 ×− , (Wu et al 2005).  

The experimental and analytical results of the steel beam connections to the reinforced concrete 
columns conducted by Sheikh (1987) indicated that the shear stress varied between 

cc f 2.99andf 1.99 ′′ (in MPa), and the panel deforms as a monolithic unit. Thus, in Eq. (9) it is 
assumed that the entire concrete core area is effective in resisting the joint shear. 

The shear strength at the web panel, Vwfn in Eq. (10) is provided by means of the shear yielding in the 
web, Vwn and the flexural rigidity of the flanges at the connection panel joint boundaries, Vfn.  

Depending on the shear yield stress of 0.6Fyw of the Von Mises yield criteria, and as per the (AISC) 
LRFD specifications (1994), the web shear yield is calculated using Eq. (11), based on an average 
yield shear stress of 0.6Fyw acting over the horizontal web area within the joint panel.  

The shear resistance of the flanges is calculated using Eq. (12), (Sheikh 1987 and Deirlein 1988). The 
web panel shear strength is given by the following equations:  

 fnwnwfn VV=V +                                         (10) 

 wjywwn tbF .60=V                                               (11) 

 b

pf
fn

d

M4
=V                                                (12) 

 0.4

btF
=M f

2
fyf

pf                                                           (13) 

where Fyw and Fyf are the yield stress of the beam web and flange respectively, and tw and tf are the 
beam web and flange thicknesses, while bj and  db are the width of the panel joint and the depth of the 
beam respectively. 
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Figure 13 shows the hysteretic curves of shear deformation at the panel zone for both specimens. The 
shear force at the panel zone during testing is less than the calculated nominal shear capacity, due to 
the beam failure mechanism. Also, no inelastic deformations were observed, indicating that these 
equations used for calculating the nominal shear capacity for panel zone are conservative. 

 

 

 

 

 

 

Figure 13. Hysteretic curves of shear deformation at the panel zone for both specimens 

7 CONCLUSIONS 

Previous research studies have indicated that the through beam type connection detail is an ideal rigid 
connection for attaching steel beams to CFT columns but this requires site welding. In this study a new 
connection is proposed where site welding can be avoided for through beam type connections for both 
circular and square CFT columns and the location of the yielding can be moved away from the column 
face. The results showed the capability of the proposed bolted bracket to develop the full plastic 
flexural capacity of the beam when the strong column-weak beam criterion is followed and the beams 
had inelastic rotational angles of 0.077 and 0.06 radians for the connection with square and circular 
CFT columns respectively, at their end, which were in excess of 0.04 radians as recommended by 
AISC (2002) for high seismic areas. The proposed, through beam type connection can be used in high 
seismic regions. Also the simulation results match well with the test results, and this demonstrates the 
ability of model developed using RUAUMOKO-2D software to simulate the cyclic behaviour of the 
through beam connection, very well. 
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