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the first earthquake event in Darfield. The focus of the research has been on the development of low 
damage solutions for non-structural walls, covering the most vulnerable non-structural wall systems 
currently in use both in New Zealand and overseas (drywalls and unreinforced clay bricks). In this 
paper, the seismic performances of the as built drywall construction practice and the developed low 
damage drywall solutions are reported and compared as a result of the experimental testing program. 

2 OBJECTIVES AND METHODOLOGY 

Considering the lack of information on the behaviour of non-structural drywalls infilled within a 
structural frame except for racking tests carried out on the drywall itself (Adham et al., 1990; Araya-
Letelier & Miranda, 2012; Freeman, 1971; Rihal, 1980), the first phase of the research investigated the 
reverse cyclic behaviour and damage thresholds for existing (as built) drywall practice, typical of New 
Zealand practice (Tasligedik et al., 2012). The objective was to develop low damage solutions by 
observing the results obtained from the as built specimens of two different drywall types, i.e. light-
gauge steel framed and timber framed. The specimens were tested under increasing drift amplitudes by 
using quasi-static testing protocol. 

3 AS BUILT NON-STRUCTURAL STEEL/TIMBER FRAMED DRYWALL PRACTICE 

In New Zealand, drywall construction specifications are usually provided by the manufacturer (GIB, 
2006, 2010), which are required to be compliant with the standard for the finishing of the gypsum 
linings (AS/NZS2589, 2007). In spite of these standardized regulations, generally there is no specific 
control during the construction and installation of these types of non-structural walls within a 
structure, unlike the structural systems. This lack of quality control can generally be attributed to the 
misleading definition of non-structural elements, which seems not to trigger requirements for adequate 
check by the structural engineers. In addition to that, the lack of innovative technologies and 
construction details for damage mitigation of drywalls contribute to the continuously observed poor 
seismic performance.  

In the existing practice, depending on the type of underlying framing, drywalls can be constructed in 
two ways; Light gauge steel framed drywalls (STFD) and timber framed drywalls (TBFD). The as 
built steel framed drywalls are typically adopted within commercial buildings due to the ease of 
installation. Timber framed drywalls are defined as load bearing elements and are mostly adopted in 
residential houses as bracing elements. However, their installation in commercial buildings as non-
structural walls is also allowed and adopted. Both of these as built drywall types are usually either 
attached to the surrounding structural framing or to the upper and lower floor slabs, prone to inter-
storey drifts. The as built steel framed drywall construction requires the steel studs to be fixed to the 
top and bottom steel tracks with a single screw (Figure 2a). These studs are required to be cut shorter 
to allow for thermal expansion. Although the as built timber framed drywalls are constructed similarly, 
the presence of the horizontal timber elements and the timber-to-timber nail connections make the 
inner timber framing stiffer and more rigid. The details of the existing drywall practice (as built 
practice) are summarized in Figure 2. 

4 TEST SPECIMENS AND TEST SETUP 

4.1 Test Specimens 

In order to cover the construction materials typically used in practice, both types of inner framings 
were considered: light-gauge steel frames and timber frames. Four specimens were tested. Two 
specimens (FIF1-STFD and FIF2-TBFD) incorporated existing detailing (as built) for steel and timber 
frames while the last two specimens (MIF1-STFD and MIF2-TBFD) incorporated improvements of 
existing technologies which minimize post-earthquake damage through the use of sliding connections. 
Except for the different framings and connection details, the specimens were constructed in the same 
way using the same type of gypsum lining (13 mm thickness). The specimens are summarized in 
Table 1. 
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 a)                    b) 

Figure 2. As built non-structural drywall practice: a) as built steel framed drywall (FIF1-STFD), b) as 
built timber framed drywall (FIF2-TBFD) 

Table 1. Summary of the test specimens 

Specimen  Inner Frame Type  Connection Type 
FIF1-STFD  Light gauge steel frame  

Fully connected – As built practice 
FIF2-TBFD  timber frame  
MIF1-STFD  Light gauge steel frame  Sliding connections - Low damage solution 

(Modified practice) MIF2-TBFD  Timber frame  
Notes: 
BF: Bare Frame, FIF: Fully Infilled Frame (As-built practice), MIF: Modified Infilled Frame (Low 
damage solution), STFD: Steel Framed Drywall, TBFD: Timber Framed Drywall 

4.2 Test Setup 

Quasi-static reverse cyclic tests were carried out on the drywalls using a full scale reinforced concrete 
PRESSS frame (Pampanin et al., 2010), specially designed to be re-used in the experimental program. 
This frame, acting as the testing rig, consisted of two precast RC columns and beams (f’c=50 MPa, 
fy=500 MPa) connected by two un-bonded D40 Macalloy 1030 bars (Macalloy, 2007), one for each 
connection with a post tensioning force of 80 kN. The deformed shape of the setup simulated the inter-
storey drift at an inner storey of a multi-storey structure. The lower beam-column connections had 
pivot points at mid-height of the beam in order to eliminate the effects of different rates of beam 
elongation occurring at the upper and lower beams. The structural skeleton behaved as a typical linear 
elastic post-tensioned rocking system. A hydraulic jack of 1000 kN capacity was used to impose in-
plane displacements. In order to prevent out-of-plane deformations of the setup, the testing frame was 
constrained to remain in-plane using 4 rollers on the upper beam. Using a rotary pod, the displacement 
control was carried out at the right end of the setup, the same height as the hydraulic jack. The 
displacement history was prepared in accordance with the ACI 374.1 guidelines (ACI374.1-05, 2005). 
The test setup and the applied displacement history are shown in Figure 3. 
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Figure 3. Test setup and applied displacement protocol 

5 AS BUILT SPECIMENS: TEST RESULTS 

Under the imposed displacements, the specimen lost its serviceability at 0.3% inter-storey drift by the 
formation of a vertical cracking at the lining interfaces. According to the New Zealand code 
(AS/NZS1170.0, 2002), this limit for new design would be predicted to occur at 0.66% drift, thus 
representing a remarkable overestimation of performance (Figure 4a). The specimen suffered 
significant interface damage between the linings starting at 0.3% drift till the end of the test at 2.5% 
drift level (Figure 4c). The results were used to calibrate the diagonal strut model implemented in this 
reported work. For simplicity the drywall was modelled as single strut acting both in compression and 
tension following Wayne Stewart degrading stiffness hysteresis rule Ruaumoko 2D (Carr, 2013). The 
numerical and experimental comparison of the hysteresis curves are shown in Figure 4a. 

a)  b)  

c)    

Figure 4. As built steel framed drywall specimen FIF1-STFD: a) total lateral force vs. inter-storey drift 
hysteresis, b) diagonal force vs. inter-storey drift hysteresis used to model Wayne Stewart degrading 
stiffness model, c) damage at the end of the test and the behaviour mechanism 

When compared to the as built steel framed drywall specimen, the as built timber framed drywall 
specimen FIF2-TBFD behaved rather differently. Due to the presence of horizontal timber elements in 
addition to the vertical timber studs, the underlying framing was stiffer. Therefore, there was a more 
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significant strut action, which changed the global behaviour and the failure mode accordingly. The 
specimen remained serviceable until 0.75% drift level. At 0.75% drift, the anchors used to fix the 
timber framing to the lower beam sheared (Figure 5c). This level of drift was slightly higher than, but 
overall comparable with the value (0.66%) recommended for design in the NZS1170.0, suggesting that 
the NZ code limit state values might be better calibrated on timber framed drywalls (Figure 5a). On 
the other hand, the interaction of this drywall type was brittle rather than ductile, unlike steel framed 
drywall. The profound strut effect also showed itself by corner damage at the drywall as it can be seen 
in Figure 5d. 

a)  b) c)   

d)    

Figure 5. As built timber framed drywall specimen FIF2-TBFD: a) total lateral force vs. inter-storey drift 
hysteresis, b) diagonal force vs. inter-storey drift hysteresis used to model Wayne Stewart degrading 
stiffness model, c) sheared anchors, d) Damage at the end of the test and the behaviour mechanism 

6 LOW DAMAGE SPECIMENS 

6.1 Concept of Low Damage Drywall Solutions 

The results of the typical (as-built) drywall specimens showed that the deformation demand imposed 
on the drywall was so high that the connection arrangements adopted in the existing practice cannot 
accommodate the drift levels reached by a building during an earthquake at their serviceability limit 
state. Therefore, some modifications to standard detailing used in practice were proposed and 
implemented with the aim to significantly improve the overall performance, which will make it 
possible to accommodate design drift levels with no or low damage to the ‘non-structural’ drywalls 
(Figure 6). These modifications were kept simple with no additional material, labour or complicated 
detailing in order to facilitate their wider adoption by contractors and design practitioners in real life 
applications. The developed solution was applied in two different ways for steel and timber framed 
drywalls. However, the two different detailing are inter-changeable and independent of the type of the 
underlying framing as shown in Figure 7 for steel (MIF1-STFD) and in Figure 8 for timber framed 
drywall specimen (MIF2-TBFD). 
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Figure 6. Developed low damage drywall details: the studs can either be steel or timber 
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Where;        D : Drift level to be accommodated in % (1.5) 

          hc : Clear height of the wall (2550 mm) 

          ΔG: Calculated side gap 

In both specimens, the side gap, ΔG, provided on the sides of the gypsum linings was calculated to 
accommodate a drift level of D=1.5% by using equation 1, which can be chosen differently depending 
on the performance objectives and design requirements. Until this drift value, there is no interaction 
between the structural frame and the non-structural wall, meaning no damage at the non-structural 
wall. Accordingly, ΔG was calculated as 20 mm. It should be noted that this is the side gap width. 
Therefore, the total gap to be provided per floor is 40 mm. For the MIF1-STFD, the total required 
floor gap of 40 mm was distributed throughout the wall linings as two exterior (15 mm) and two 
interior gaps (5 mm) among three lining panels (Figure 7). For the low damage timber framed drywall 
specimen MIF2-TBFD, the same total design gap of 40 mm per floor was distributed at the side lining 
edges only with no interior gaps (Figure 8). Therefore, the lining-to-lining joints had a flushed finish, 
making it architecturally more appealing. 

 

 
Figure 7. Details of the low damage steel framed drywall specimen MIF1-STFD 
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Figure 10. The observed damage at the end of the test of the low damage steel framed drywall specimen 
MIF1-STFD and the behaviour mechanism 

 
Figure 11. The observed damage at the end of the test of the low damage timber framed drywall specimen 
MIF2-TBFD and the behaviour mechanism 

7 CONCLUSIONS 

Experimental tests have confirmed that the as built drywall systems adopted in the current practice for 
commercial buildings are susceptible to a level of damage which would require repairing interventions 
at low drift levels. The as built steel framed drywall specimen lost serviceability at 0.3% inter-storey 
drift level with a ductile post-yield behaviour. On the other hand, the timber framed drywall lost 
serviceability at a higher drift level of 0.75% with a brittle behaviour. The difference in the behaviour 
of the as built timber framed drywall can be attributed to the difference in the stiffness of the 
connections and the inner framing system, which had additional horizontal timber elements. 

The inherent low seismic performance of the as built drywalls was improved and turned into a low 
damage solution by allowing the drywall partitions to slide in the provided steel tracks within the 
structural frame. The adopted details were simple and practical enough to be easily applied in real life 
by contractors and practitioners with no additional cost, material or labour. 

The proposed low damage drywall solution significantly delayed the occurrence of cracking at lining 
interfaces up to moderate-to-high levels of drifts by enabling the studs and linings to slide inside the 
steel tracks. The only observed damage consisted of minor plaster cracks at aluminium L-trim finishes 
that occurred after the closing of the gaps, at 1.5% drift level. The proposed low damage system was 
totally isolated from the structural frame system, while the detailing for adequate fire performance was 
maintained. However, the acoustic performance of these ‘evolved’ non-structural drywall types may 
require some improvement by the industry before fully adopting in real life applications, which was 
out-of-scope of this research. 
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