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ABSTRACT: The use of rigid engineered timber panels, such as cross-laminated-timber, 
in construction is increasing around the world, particularly in Europe and Australasia. 
Typically the panels rely on nailed or screwed steel plates for hold-downs and shear keys. 
However, this can mean the level of ductility is difficult to quantify. Furthermore ductile 
wall behaviour will inevitably be associated with permanent damage to the connections. 
There have been calls from designers for a solution in which the level of ductility can be 
predicted and achieved with confidence. The authors propose a novel, yet simple, slip-
friction device that limits activated forces on a structure during an earthquake by allowing 
it to slightly rock. An experimental LVL wall was fitted with these devices acting as 
hold-downs. The shear key consisted of steel rods bearing against upright steel plates 
along the base of the wall. Under cyclic displacement tests, the wall demonstrated 
excellent elasto-plastic behaviour. The predicted wall strength from theory, matched, in 
general, the forces measured, while ductility levels can be as large as the designer desires, 
within obvious limits. Even under only self-weight, the wall readily descended at one 
end, while uplifting at the other. The results suggest that structures of engineered lumber 
can perform with reliable levels of ductility and remain free from damage. 

 

1 INTRODUCTION 

The design of seismic resistant structures relies significantly on limiting base shears to acceptable 
levels, and this can be achieved by a variety of means. Traditionally, through allowing the structure to 
deform plastically at pre-defined locations in the structure, catastrophic collapse can be avoided and 
damage confined to specific locations, but nevertheless the structure often ends up in an irreparable 
state following a design level earthquake. To improve the earthquake performance of buildings, recent 
years have seen a movement towards adoption of damage avoidance principles, i.e. low-damage 
design. Ways to implement such a concept are varied, and these include the semi-rigid joints 
developed by Clifton (2005) that permit non-linear behaviour without actual permanent material 
damage to the structural frame. Allowing structures to uplift and rock (Ma, 2010), or even considering 
the deformation of the soil foundation itself (Qin et al., 2013) are other ways of limiting base shear, 
and thereby reducing the possibility of damage, while also allowing structures to be designed more 
economically.  

The mechanics of rocking rigid structures has been given considerable attention by researchers, and as 
early as 1963, Housner (1963) analytically described the behaviour of such ‘inverted pendulum’ 
structures. Makris and Konstantinidis (2003) have already established that the behaviour of a rocking 
rigid block cannot be described in the same manner as that of an SDOF oscillator - the restoring 
mechanism of an SDOF oscillator originating from its inherent elasticity, whereas the re-centring 
action of a rocking block comes from its self-weight.  

Qin et al. (2013) and Acikgoz and DeJong (2012) have addressed the behaviour of flexible rocking 
structures (as opposed to rigid blocks), comparing these structures with those of comparable linear 
elastic oscillators and rigid rocking structures, and have revealed that flexible rocking structures have 
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a response different from both rigid rocking, and linear elastic structures. 

Timber has seen increasing popularity as a construction material in recent years due to its beneficial 
characteristics in regard to sustainability, as well as its aesthetic properties. The rocking concept has 
seen implementation in construction using timber. Significant research has been carried out on rocking 
timber walls at the University of Canterbury in New Zealand. For these walls, post-tensioned cables 
assist in re-centring - as well as restraining against overturning up to a certain level, and small ‘U’ 
shaped steel dampers provide additional energy dissipation (Newcombe et al., 2011). Devereux et al. 
(2011) describes the design of such walls, and their inclusion in the NMIT Arts and Media Building 
situated in Nelson, New Zealand.  

Loo et al. (2012a) have proposed a related concept for both flexible and rigid timber structures, but 
with damping provided mostly by slip-friction (or slotted-bolt) connectors that act as shear wall hold-
downs. Base shear is capped by limiting the maximum overturning moment allowed, through 
adjusting the slip-force (Fslip = T) in the hold-downs connectors (see Figure 1a). The proposed 
connectors have force-displacement characteristics that are essentially elasto-plastic (Figure 1b), and 
provide energy dissipation in the form of Coulomb damping (Figure 1c). The damping effect of these 
friction devices are expected to override the unpredictability inherent in pure rocking, which relies on 
damping mainly through impact of the base of the wall with the foundation, and is sensitive to the 
material type of the wall and foundation. An additional possible benefit is that in applying the concept 
to rigid timber structures (such as those of CLT panel construction), as well as limiting damage, there 
is the benefit of reducing the extremely high response accelerations inherent in stiff and rigid 
structures (Loo et al., 2012a). 

 
Figure 1. (a) General concept, (b) hysteretic behaviour of slip-friction connector, and (c) Coulomb 
damping characteristics on an SDOF system provided by the slip-friction connector. 

 

Numerical studies carried out by Loo et al. (2012b) show that maximum drifts are likely to be within 
code mandated limits, and that residual drifts are expected to be small, even under a nominal amount 
of vertical loading.  

This paper provides a brief discussion of experimental work on a new type of slip-friction connector 
proposed by the authors, and the results from tests on an experimental rigid timber wall. The slip-
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connection, this was avoided by placing all five bolts in tension and thus mobilizing friction between 
the plates and the timber surface. This was achieved through the placement of Solon 16L150 Belleville 
washers at both sides of the bolts and tightening them to their flattened deflections. 

LVDTs at the bottom corners recorded vertical uplift and a draw-wire was used to record horizontal 
displacement at the top corners of the wall. 

The slip-friction connectors were attached to the end chords of the wall by riveted connections (see 
Figure 4c), and secured at the other end to the foundation using a single 24 mm bolt acting in double 
shear between steel brackets welded to the foundation. The shear-key assemblage (see Figure 4d) 
consisted of two solid steel 25 mm diameter pins inserted through the base of the wall, and bearing 
against upright mild steel plates on both sides of the wall. These mild steel plates were welded to the 
32 mm thick foundation steel plates.  

4 SHEAR KEY 

The shear key is briefly described in this section. For a detailed discussion refer to Loo et al. (2014b). 
The shear key consists of two 25 mm diameter steel rods inserted through the base of the wall, with 
the two rods bearing against vertical steel plates welded to the foundation. Note that the edges of the 
plates against which the steel rods bear, are sloped at a slight angle (12 degrees to the vertical, this in 
order to reduce frictional effects and to facilitate overturning of the wall). 

The forces on the wall are shown in Figure 5. Note that the forces provided by the slip-friction 
connectors and the forces on the steel rods of the shear pin, are the maximum potential mobilised 
forces. 

 
Figure 5. Forces on shear wall, with racking force P applied at the top corner. Note that the forces 
represent the mobilised forces during overturning movement. 

 
From Figure 5, an expression for racking force, P, can be derived: 
 ܲ = ிೞ೗೔೛஻ାೈೞ೐೗೑ಳమ ା∑ ௐ೔௟೔೙೔సభுି௄೘ೝ೛                      (1) 
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, with Kmrp a multiplier representing the effects of friction and geometry of the shear key and wall:  
௠௥௣ܭ  = ሺℎଶ + ܾଶሻଵ/ଶ cos ∅ ቂߤcos	ቀ∅ − tanିଵ ቀ௛௕ቁቁ − ݊݅ݏ ቀ∅ − tanିଵ ቀ௛௕ቁቁቃ    (2) 

 
The wall strength, P can be plotted against ∅ for various coefficients of connector strength, Fslip. Figure 
6 shows the relation of P with ∅ for the experimental wall, with parameters µ= 0.61, h = 0.06 m, b = 
0.91 m, Wself = 2.8 kN. It can be seen that the strength of the wall reduces with increasing angle be-
tween the shear key and the vertical, but this is not necessarily a negative consequence – rather it indi-
cates that the relatively unpredictable frictional effects arising from within the shear key are somewhat 
mitigated. 

 
Figure 6. Variation of wall strength, P, as a function of shear key inclination from the vertical, and slip-
threshold of the slip-friction connectors. 

5 RESULTS 

A series of tests were carried out on the wall, at incrementally higher slip-friction threshold forces 
(achieved through tightening of the Belleville washer stack to correspond to various deflections). Es-
timates of the peak racking forces were arrived at from Equation 1, and the observed strengths gener-
ally agreed with the predicted. Figure 7 shows a typical force-displacement result. It can be seen that 
the forces on the wall were essentially the same, for both loading directions, and this testifies to the 
precision achieved in adjusting the slip-friction connector forces at both ends of the wall. The behav-
iour of the wall closely corresponds to the ideal elasto-plastic case.  
 

 
Figure 7. Hysteretic behaviour of experimental wall 
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Results from the tests showed that the measured strengths corresponded closely with the strengths 
predicted from Equation 1 (see Figure 8). 

 

 
Figure 8. Wall strength, P: Measured strength compared with predicted. 

 

It was also found that in general, the wall would descend at one end, while ascending at the other end. 
Thus the wall will not incrementally ‘climb’ up the slip-friction connector under loading, and the 
‘climbing’ phenomenon would only be expected to occur if the absolute difference in slip-force 
between the two connectors was greater than the sum of the self-weight and vertically imposed forces 
on the wall. A comprehensive presentation and discussion of the results can be found in Loo et al. 
(2014b). 

6 CONCLUSIONS 

Experiments on a 2.44 m x 2.44 m wall were carried out. The slip-friction connectors capped base 
shears on the wall to their expected levels (also taking into account the effect of friction from the shear 
key). Excellent elasto-plastic behaviour was achieved, and re-centring potential is promising - given 
the fact that the wall would readily descend at one end, while uplifting at the other, this effect 
happening under what was essentially only the self-weight of the wall.  

The concept has potential to be considered in the future design of structures of rigid timber 
construction, such as those of cross-laminated timber. 

Further research will involve testing the current experimental rig with different shear key 
configurations and dispositions, as well as numerical and experimental shake table research to confirm 
the performance of such a structure, especially in regards to maximum and residual drifts.  
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