Effect of plywood retrofit on dynamic response of URM house subjected to forced vibration

Presenter:
Abdul Razak Abdul Karim

Co-authors:
C. Oyarzo-Vera, N. M. Sa’don, and J. M. Ingham
Contents

- Introduction
- Construction details
- Instrumentation
- Experimental procedure
- Results
- Conclusions
Introduction

URM material
(late 19th century & early 20th century)

Major destruction
(1931 Hawke’s Bay Earthquake)

Legally prohibited
(1965 – NZS 1900)

Constructed between
1880 and 1950

[Photo Credit: Alexander Turnbull Library, National Library of New Zealand]
Major cause of URM building failures (1931 Hawke’s Bay EQ)

- no connections between walls and floor or roof diaphragms (Blaikie and Spurr, 1992)

Out-of-plane wall (tension anchors required to avoid separation between wall and diaphragm)

In-plane wall (shear anchors needed to avoid sliding of diaphragm)

Earthquake loading

act as cantilever wall over the total height of building
Current problems in URM buildings

- wall-diaphragm connections were only applied at joist perpendicular to wall

East-West earthquake direction

- east and west walls are subjected to out-of-plane failure
- pounding between diaphragm and east/west walls
• all perimeter walls of URM buildings were anchored
• east and west walls were anchored to the transverse beams instead of directly to the joist
• load transfer to diaphragm are not efficient as the timber joists are only seated on the transverse beams without positive connections
• also, these connections were too far apart and may not sufficient in strength to hold east and west walls
Gisborne Earthquake, 2007

out-of-plane wall failure
Gisborne Earthquake, 2007

parapet failure

Abdul Razak Abdul Karim
04 Apr 2009
Gisborne Earthquake, 2007

connection failures
Objectives

- to determine the dynamic properties of the as-built URM structure
- to investigate the force path through the as-built URM structure
- to evaluate changes in the dynamics structural characteristics and the force path due to retrofit implementations
Construction details

- recycle clay bricks
- mortar - 1:2:9 (cement:lime:sand)
- timber joists
 - supported by the interior leaf (pocket) of the east and west walls
- floor planks
 - staggered pattern to avoid the diaphragm being overly stiff

as-built (north view)
Retrofit implementations

plywood retrofit

wall-diaphragm connection retrofit

Abdul Razak Abdul Karim

04 Apr 2009
Bolted timber connection details (two bolts)
Instrumentation

desktop with MatLab application

amplifier for shaker

data acquisition box

electrodynamic linear mass shaker

accelerometer (horizontal)

small accelerometer (horizontal)
Experimental Procedure

As-built

Plywood retrofit

Wall-diaphragm connection retrofit
Summary of forced vibration tests

<table>
<thead>
<tr>
<th>Stage</th>
<th>Shaker excitation</th>
<th>Freq. range (Hz)</th>
<th>Freq. step (Hz)</th>
<th>Excitation (s)</th>
<th>Delay (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-built</td>
<td>NS</td>
<td>10.0-15.0</td>
<td>0.1</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>EW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plywood</td>
<td>NS</td>
<td>14.5-19.5</td>
<td>0.1</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>EW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchor</td>
<td>NS</td>
<td>17.0-22.0</td>
<td>0.1</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>EW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- stepped sine input motion
- 500 data per second
- total time each test = 17 minutes
Results

Transfer function curves – NS excitation

- natural frequency and amplitude was changed significantly due to the retrofit implementations
Transfer function curves – EW excitation

Test point 11 (as-built)
16.6 Hz

Test point 11 (plywood retrofit)
11.8 Hz

Test point 11 (wall-diaphragm anchor)
18.3 Hz

Frequency (Hz)

Txy (g/N)
NS mode shapes (as-built vs plywood vs anchor)

2.98
plywood retrofit
N
0.04
0.08

0.95
as-built

0.30
as-built

0.08
0.12

plywood retrofit
+ anchor

0.85

0.03
0.04

0.81

3.35
EW mode shapes (as-built vs plywood vs anchor)
Normalised amplitude ratio

<table>
<thead>
<tr>
<th></th>
<th>As-built</th>
<th>Plywood retrofit</th>
<th>Plywood retrofit + Wall-diaphragm anchor</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>1</td>
<td>0.47</td>
<td>0.08</td>
</tr>
<tr>
<td>WE</td>
<td>1</td>
<td>0.40</td>
<td>0.26</td>
</tr>
</tbody>
</table>

- the successive retrofitting improves the force transfer mechanism.
- the bending failure of the out-of-plane walls can be controlled.
- the structure works as a single unit.
Conclusions

• the dynamic properties and force path through the as-built URM were investigated

• the retrofit implementations affect the dynamic properties of the structure

• the force distribution to the URM walls was significantly improved by the plywood diaphragm and connection
Acknowledgements

Abdul Razak Abdul Karim

04 Apr 2009
Effect of plywood retrofit on dynamic response of URM house subjected to forced vibration

Presenter:
Abdul Razak Abdul Karim

Co-authors:
C. Oyarzo-Vera, N. M.Sa’don, and J. M. Ingham
Coherence function curves

- Test point 2 (NS excitation)
- Test point 11 (WE excitation)
Blockings

Nail connections

Joists