“Performance Assessment of Inadequately Detailed Reinforced Concrete Columns”

Alistair Boys
Professor Des Bull
Dr Stefano Pampanin

Introduction

- Significant proportion of existing building stock with inadequate detailing, including:
 - Inadequate lateral restraint of longitudinal bars
 - Large separation between stirrup sets
 - Lap-Splices in PPHZ
 - Cranked Bars at the top of the Lap-Splice

- Can lead to:
 - Shear failure of columns due to insufficient transverse steel intersecting the failure plane
 - Subsequent Loss of axial load capacity
 - Structural Collapse if redistribution of load not possible

Drift Based Failure Model

- Elwood and Moehle (2005)
 - F-δ from M-Φ
 - Bi-Linear F-δ
 - Shear Limit
 \[\delta_s = \frac{3}{100} + 4\rho \frac{d_t}{f_y} \cdot \frac{1}{f' \gamma} \cdot \frac{1}{P} \cdot \frac{1}{40A_s f_y} > 1 \]
 - Axial Limit
 \[\delta_a = \frac{4}{100} \cdot \frac{1+\tan^2 65^\circ}{\tan 65^\circ + P} \frac{s}{A_s f_y} \frac{d_t}{\tan 65^\circ} \]
 - Backbone Model

Experimental Program

<table>
<thead>
<tr>
<th>Specimen Designation</th>
<th>Lap Length</th>
<th>Tie Details</th>
<th>Axial Load</th>
<th>Loading Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>24L-300-2D</td>
<td>600mm (24 d_t)</td>
<td>R10 @ 300mm</td>
<td>2000kN (0.3f'cAg)</td>
<td>2D Quasi-Static</td>
</tr>
<tr>
<td>24L-300-3D</td>
<td>600mm (24 d_t)</td>
<td>R10 @ 300mm</td>
<td>2000kN (0.3f'cAg)</td>
<td>3D Quasi-Static</td>
</tr>
<tr>
<td>30L-300-2D</td>
<td>750mm (30 d_t)</td>
<td>R10 @ 300mm</td>
<td>2000kN (0.3f'cAg)</td>
<td>2D Quasi-Static</td>
</tr>
<tr>
<td>30L-300-3D</td>
<td>750mm (30 d_t)</td>
<td>R10 @ 300mm</td>
<td>2000kN (0.3f'cAg)</td>
<td>3D Quasi-Static</td>
</tr>
<tr>
<td>24L-300-3D-R</td>
<td>600mm (24 d_t)</td>
<td>R10 @ 300mm</td>
<td>1000kN (0.15f'cAg)</td>
<td>3D Quasi-Static</td>
</tr>
<tr>
<td>24L-300-EQ</td>
<td>600mm (24 d_t)</td>
<td>R10 @ 300mm</td>
<td>2000kN (0.3f'cAg)</td>
<td>3D Quasi-EQ</td>
</tr>
</tbody>
</table>
Experimental Details

- 2 Cantilever Specimens
 - 1624mm high
 - 450mm square
 - 4 Grade 300 D25 bars
 - R10 Stirrups @ 300mm centres
 - 600mm Lap-Splices at Column Base
 - Cranked Reinforcement at Splice
 - 38mm (1.5") cover to main bars
 - Target $f'_c = 32$ MPa
- 2 Loading Protocols
 - 2D Quasi-Static
 - 3D Quasi-Static

Experimental Apparatus

- Axial Force:
 - Dartech
- Lateral Forces:
 - Self-reacting frames
 - Hydraulic actuators
- Ball Joints:
 - Bi-Directional Bending
- Counterweights:
 - Balance Frames

Specimen 1: 24L-300-2D
2D Test

- Material Strengths:
 - $f'_c = 33.6$ MPa
 - $f_y = 317$ MPa
 - $f_{yt} = 439$ MPa
- 2000kN Axial Load
 - $\sim 0.29f'_cA_0$

Specimen 1: 24L-300-2D
Loading Protocol

- 2D Loading Protocol
 - 3 Cycles @ Drift:
 - 0.1%
 - 0.25%
 - 0.5%
 - 1.0%
 - 1.5%
 - 2.0%
 - 3.0%
 - 5.0%
Specimen 1: 24L-300-2D

Experimental Results

- **Key Events:**
 - 0.5% Drift: Minor Flexural Cracks
 - 1.0% Drift: Minor Shear Cracks
 - 1.5% Drift: Minor Splitting Cracks
 - Shear Cracks Extend
 - 2.0% Drift: Splitting and Expulsion
 - Shear Cracks Extend
 - 3.0% Drift: Shear Failure prior to First Positive Peak
 - 3.0% Drift: Axial Failure Prior to First Negative Peak

Modelling

- F-δ from M-Φ
- Bi-Linear F-δ
- Shear Limit
- Axial Limit
- Corrected Axial Limit
- Backbone Model

Experimental Comparison

- Shear Failure occurs on 1st positive cycle to 3.0% Drift
- Axial Failure occurs on 1st negative cycle to 3.0% Drift
- Axial failure does not occur exactly on the limit but soon follows
- Backbone model fits well for 2D loading

Specimen 2: 24L-300-3D

- **3D Test**
 - Material Strengths:
 - f'_c = 28.4 MPa
 - f_y = 317 MPa
 - f'_{yt} = 439 MPa
 - 2000kN Axial Load
 - \(\sim 0.35f'_{c}A_g \)
Specimen 2: 24L-300-3D Loading Protocol

- 3D Loading Protocol
 - 3 Cycles @ Drift:
 - 0.1%
 - 0.25%
 - 0.5%
 - 1.0%
 - 1.5%
 - 2.0%
 - 3.0%
 - 5.0%
- In-Plane Drifts:
 - Maxima @ ~30°
 - Vector Drift:
 - maxima 1.3 times larger @ 45°

Specimen 2: 24L-300-3D Experimental Results

- Key Events:
 - 0.50% Drift: Flexural Cracks Form
 - 0.75% Drift: Shear Cracks Form
 - 1.00% Drift: Shear Cracks Extend
 - 1.50% Drift: Shear Failure during 1st ‘Leaf’
 - 1.50% Drift: Axial Failure during 2nd ‘Leaf’

Specimen 2: 24L-300-3D Modelling

- Modelling in 3D
 - Backbone is unidirectional assessment
- Assess 3D loading by:
 - Calculate Backbone for 45° loading
 - Resolve backbone into N-S and E-W components
 - Allows assessment in a 2D plane.

Specimen 2: 24L-300-3D Modelling

- Key features:
 - Shear and Axial limits calculated for 45° loading
 - Lateral capacity calculated for 30° loading (peak demand for each 'leaf')
 - Backbone model resolved to in-plane component
Specimen 2: 24L-300-3D
Experimental Comparisons

- Shear Failure occurs during the 1st ‘Leaf’ @ 1.5% Drift and is orientation specific
- Axial Failure occurs during the 2nd ‘Leaf’ @ 1.5% Drift soon after drift limit exceeded

Conclusions: Implications

- Implications for existing Structures:
 - 3D loading causes loss of lateral and axial capacity at very low levels of drift
 - 1.5% in-plane for 3D
 - 2.5% for 2D
 - Highlights the inherent potential for catastrophic Failure of existing structures

Conclusions: Observations

- Model captures drift limits for:
 - Shear and Axial failures
 - 2D and 3D Loading
- Reduced 3D drift capacity due to
 - Reduced effectiveness of stirrups
 - Resolving vectorial drift capacity to in-plane capacity
- Shear Failure Plane necessary for Axial Failure (direction specific)
- 3D loading causes multiple shear planes (hourglass)

Conclusions: Future Work

- Implementation of model limits into Time-History software necessary for complete assessment of structures
 - Post-failure redistribution of load?
 - Progressive Collapse?
- 3D Failure surfaces necessary as opposed to unidirectional backbones
 - Direction dependent limits
 - Asymmetric specimen capabilities
Acknowledgments

Professor Des Bull and Dr Stefano Pampanin for their insight and direction

Laboratory Technician John Maley

University of Canterbury

Foundation for Research, Science and Technology

(Retrofit of multi storey Frames)